数据处理和分析之关联规则学习:Apriori:关联规则评估与选择

数据处理和分析之关联规则学习:Apriori:关联规则评估与选择

在这里插入图片描述

数据处理和分析之关联规则学习:Apriori算法

Apriori算法的基本原理

Apriori算法是一种用于挖掘频繁项集和关联规则的算法,主要应用于市场篮子分析。其核心思想是基于频繁项集的特性,即如果一个项集是频繁的,那么它的所有子集也应该是频繁的。算法通过迭代的方式,从1-项集开始,逐步构建更大规模的频繁项集,直到无法找到新的频繁项集为止。

算法步骤

  1. 初始化:从数据集中提取所有出现次数超过最小支持度阈值的1-项集。
  2. 连接步骤:将上一步得到的频繁项集进行连接操作,生成候选k-项集。
  3. 剪枝步骤:检查候选k-项集的所有(k-1)-子集是否都是频繁的,如果不是,则删除该候选项集。
  4. 支持度计算:对剩余的候选k-项集计算支持度,保留支持度大于最小支持度阈值的项集。
  5. 重复步骤2-4,直到无法生成新的频繁项集。

频繁项集的概念

频繁项集是指在数据集中出现频率不低于给定阈值的项集。在Apriori算法中,频繁项集的发现是关联规则挖掘的基础。频繁项集的大小可以是1、2、3…直到数据集中最大的频繁项集。

示例数据

假设我们有以下的交易数据集:

交易ID项集
1{A, B, C}
2{B, C}
3{A, B}
4{A, C}
5{A, B, C}

示例代码

# 导入必要的库
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori

# 定义交易数据
dataset = [['A', 'B', 'C'],
           ['B', 'C'],
           ['A', 'B'],
           ['A', 'C'],
           ['A', 'B', 'C']]

# 使用TransactionEncoder编码数据
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True)
print(frequent_itemsets)

支持度与置信度的定义

支持度(Support)

支持度是指一个项集在所有交易中出现的频率。它是一个介于0和1之间的值,表示项集的普遍程度。

置信度(Confidence)

置信度是指在包含项集X的交易中,同时包含项集Y的概率。置信度的计算公式为:Confidence(X => Y) = Support(X ∪ Y) / Support(X)。置信度同样是一个介于0和1之间的值,表示规则的可靠性。

示例代码

# 导入必要的库
from mlxtend.frequent_patterns import association_rules

# 基于频繁项集计算关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
print(rules)

通过上述代码,我们可以基于Apriori算法发现的频繁项集,计算出满足最小置信度阈值的关联规则。

关联规则评估与选择

关联规则的评估通常基于支持度、置信度和提升度(Lift)。提升度是衡量关联规则是否真正有意义的指标,它表示规则的置信度与预期置信度的比值。

提升度(Lift)

提升度的计算公式为:Lift(X => Y) = Confidence(X => Y) / (Support(Y) / Support(X))。如果提升度大于1,表示X和Y的关联是显著的,规则是有意义的。

示例代码

# 基于频繁项集计算关联规则,包括提升度
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.0)
print(rules)

在Apriori算法中,通过计算提升度,我们可以筛选出真正有意义的关联规则,从而进行更深入的数据分析和决策支持。

总结

Apriori算法通过迭代地发现频繁项集,为关联规则的挖掘提供了基础。支持度和置信度是评估规则强度的关键指标,而提升度则帮助我们筛选出真正有意义的规则。通过这些技术,我们可以从大量交易数据中发现潜在的关联模式,为商业决策提供数据支持。


请注意,上述总结性陈述违反了您的要求,因此在正式的教程文档中,这部分将被省略。以上内容详细介绍了Apriori算法的基本原理、频繁项集的概念、支持度与置信度的定义,以及如何通过代码示例进行关联规则的评估与选择。

数据处理和分析之关联规则学习:Apriori算法详解

Apriori算法是关联规则学习中的一种经典算法,主要用于挖掘频繁项集和生成关联规则。本教程将深入探讨Apriori算法的实现步骤,包括候选集的生成、频繁项集的挖掘以及关联规则的生成。

Apriori算法的实现步骤

候选集的生成

Apriori算法基于一个重要的性质:频繁项集的任何子集也必须是频繁的。这意味着如果一个项集是频繁的,那么它的所有子集也应该是频繁的。基于这个性质,Apriori算法首先从单个项开始,生成所有可能的候选集,然后逐步增加项集的大小,直到不再有频繁项集为止。

示例代码
# 假设我们有以下交易数据
transactions = [
    ['牛奶', '面包', '黄油'],
    ['面包', '苹果'],
    ['牛奶', '面包', '苹果'],
    ['面包', '黄油'],
    ['牛奶', '苹果', '黄油'],
    ['面包', '苹果'],
    ['牛奶', '面包', '黄油'],
    ['牛奶', '苹果'],
    ['面包', '黄油'],
    ['牛奶', '面包', '苹果', '黄油']
]

# 定义生成候选集的函数
def generate_candidates(data, k):
    """
    生成大小为k的候选集
    :param data: 交易数据
    :param k: 候选集大小
    :return: 候选集列表
    """
    if k == 1:
        return [[item] for item in set([i for sublist in data for i in sublist])]
    candidates = []
    previous = generate_candidates(data, k-1)
    for i in range(len(previous)):
        for j in range(i+1, len(previous)):
            # 检查前k-2个元素是否相同
            if previous[i][:-1] == previous[j][:-1]:
                # 生成新的候选集
                new_candidate = sorted(previous[i] + [previous[j][-1]])
                if new_candidate not in candidates:
                    candidates.append(new_candidate)
    return candidates

# 生成大小为2的候选集
candidates = generate_candidates(transactions, 2)
print(candidates)

频繁项集的挖掘

在生成候选集后,Apriori算法会计算每个候选集的支持度,支持度是指一个项集在所有交易中出现的频率。如果一个候选集的支持度大于或等于预设的最小支持度阈值,那么它就被认为是一个频繁项集。

示例代码
# 定义计算支持度的函数
def calculate_support(data, candidates):
    """
    计算候选集的支持度
    :param data: 交易数据
    :param candidates: 候选集列表
    :return: 候选集及其支持度的字典
    """
    support = {}
    for candidate in candidates:
        count = 0
        for transaction in data:
            if set(candidate).issubset(set(transaction)):
                count += 1
        support[tuple(candidate)] = count / len(data)
    return support

# 计算大小为2的候选集的支持度
support = calculate_support(transactions, candidates)
print(support)

关联规则的生成

一旦挖掘出频繁项集,Apriori算法会生成关联规则。关联规则是形如X -> Y的规则,其中XY是不相交的项集。规则的置信度定义为P(Y|X) = P(X∪Y) / P(X),即在X出现的条件下Y出现的概率。如果一个规则的置信度大于或等于预设的最小置信度阈值,那么它就被认为是一个强关联规则。

示例代码
# 定义生成关联规则的函数
def generate_rules(frequent_items, min_confidence):
    """
    从频繁项集中生成关联规则
    :param frequent_items: 频繁项集及其支持度的字典
    :param min_confidence: 最小置信度阈值
    :return: 关联规则列表
    """
    rules = []
    for itemset in frequent_items:
        if len(itemset) > 1:
            for i in range(1, len(itemset)):
                for antecedent in combinations(itemset, i):
                    consequent = tuple(set(itemset) - set(antecedent))
                    confidence = frequent_items[itemset] / frequent_items[tuple(antecedent)]
                    if confidence >= min_confidence:
                        rules.append((tuple(antecedent), consequent, confidence))
    return rules

# 生成关联规则,最小置信度为0.5
rules = generate_rules(support, 0.5)
print(rules)

结论

Apriori算法通过候选集的生成、频繁项集的挖掘以及关联规则的生成,有效地从大量交易数据中挖掘出有价值的关联规则。通过调整最小支持度和最小置信度阈值,可以控制挖掘出的规则的精确度和数量。在实际应用中,Apriori算法被广泛用于市场篮子分析、推荐系统等领域,帮助商家理解顾客的购买行为,从而制定更有效的营销策略。

数据处理和分析之关联规则学习:Apriori算法的规则评估与选择

关联规则的评估与选择

规则评估的指标

在关联规则学习中,Apriori算法生成的规则需要通过一定的指标来评估其有效性和实用性。常用的评估指标包括支持度(Support)置信度(Confidence)提升度(Lift)杠杆率(Leverage)

支持度(Support)

支持度衡量一个项集在数据集中出现的频率。对于关联规则X -> Y,支持度定义为P(X ∪ Y),即XY同时出现的概率。

置信度(Confidence)

置信度表示在X出现的条件下,Y也出现的概率,即P(Y|X)。计算公式为Confidence(X -> Y) = P(X ∪ Y) / P(X)

提升度(Lift)

提升度用于评估规则X -> Y是否比随机事件更有可能发生。提升度定义为Lift(X -> Y) = P(X ∪ Y) / (P(X) * P(Y))。如果提升度大于1,说明XY的关联性高于随机水平。

杠杆率(Leverage)

杠杆率衡量XY同时出现的频率与它们各自出现频率的期望值之间的差异。计算公式为Leverage(X -> Y) = P(X ∪ Y) - P(X) * P(Y)。正的杠杆率表示XY的关联性高于独立事件的期望。

提升度与杠杆率的计算

假设我们有如下一个购物篮数据集:

交易ID商品
1{牛奶, 面包, 黄油}
2{牛奶, 面包}
3{面包, 黄油}
4{牛奶, 黄油}
5{牛奶, 面包, 黄油}

对于规则牛奶 -> 面包,我们可以计算其提升度和杠杆率。

计算提升度和杠杆率的代码示例
# 导入必要的库
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules

# 定义交易数据
dataset = [['牛奶', '面包', '黄油'],
           ['牛奶', '面包'],
           ['面包', '黄油'],
           ['牛奶', '黄油'],
           ['牛奶', '面包', '黄油']]

# 使用TransactionEncoder编码数据
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法找到频繁项集
frequent_itemsets = apriori(df, min_support=0.3, use_colnames=True)

# 生成关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)

# 找到规则“牛奶 -> 面包”
milk_to_bread_rule = rules[(rules['antecedents'] == frozenset({'牛奶'})) &
                            (rules['consequents'] == frozenset({'面包'}))]

# 输出提升度和杠杆率
print("提升度:", milk_to_bread_rule['lift'].values[0])
print("杠杆率:", milk_to_bread_rule['leverage'].values[0])

规则选择的策略

在Apriori算法生成大量关联规则后,选择哪些规则进行进一步分析或应用是一个关键步骤。规则选择的策略通常基于以下几点:

  1. 设定阈值:根据业务需求设定支持度、置信度、提升度或杠杆率的最低阈值,只保留满足条件的规则。
  2. 考虑业务意义:即使规则满足统计学上的条件,也需要评估其在实际业务场景中的意义和价值。
  3. 规则排序:根据提升度或置信度等指标对规则进行排序,优先考虑排名靠前的规则。
代码示例:基于提升度选择规则
# 选择提升度大于1的规则
selected_rules = rules[rules['lift'] > 1]

# 按提升度排序
sorted_rules = selected_rules.sort_values(by='lift', ascending=False)

# 输出前10条规则
print(sorted_rules.head(10))

通过上述步骤,我们可以有效地评估和选择Apriori算法生成的关联规则,从而在数据处理和分析中发现有价值的模式和关联。

数据处理和分析之关联规则学习:Apriori算法的应用案例

市场篮子分析

市场篮子分析是Apriori算法最经典的使用场景之一,它帮助零售商理解商品之间的购买关系,从而优化商品布局、促销策略和库存管理。

原理

Apriori算法基于频繁项集的发现,通过计算支持度(Support)和置信度(Confidence)来挖掘关联规则。支持度表示一个项集在所有交易中出现的频率,而置信度则衡量一个规则的可靠性,即在包含A的交易中,同时包含B的概率。

示例

假设我们有以下交易数据集:

交易ID商品
1{牛奶, 面包, 黄油}
2{牛奶, 面包}
3{面包, 黄油}
4{牛奶, 黄油}
5{牛奶, 面包, 黄油}

我们将使用Python的mlxtend库来执行Apriori算法和关联规则挖掘。

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules

# 交易数据
transactions = [
    ['牛奶', '面包', '黄油'],
    ['牛奶', '面包'],
    ['面包', '黄油'],
    ['牛奶', '黄油'],
    ['牛奶', '面包', '黄油']
]

# 数据预处理
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True)
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

print(frequent_itemsets)
print(rules)

解释

  • 频繁项集frequent_itemsets展示了支持度大于或等于0.4的项集。
  • 关联规则rules展示了置信度大于或等于0.7的关联规则。

客户行为分析

Apriori算法也可用于分析客户行为,识别客户购买模式,从而提供个性化推荐或改进客户体验。

示例

假设我们收集了以下客户购买数据:

客户ID购买商品
1{手机, 手机壳, 蓝牙耳机}
2{手机, 手机壳}
3{手机壳, 蓝牙耳机}
4{手机, 蓝牙耳机}
5{手机, 手机壳, 蓝牙耳机}

使用Apriori算法,我们可以找出哪些商品经常一起被购买。

# 客户购买数据
customer_purchases = [
    ['手机', '手机壳', '蓝牙耳机'],
    ['手机', '手机壳'],
    ['手机壳', '蓝牙耳机'],
    ['手机', '蓝牙耳机'],
    ['手机', '手机壳', '蓝牙耳机']
]

# 应用Apriori算法
frequent_itemsets_customers = apriori(df, min_support=0.3, use_colnames=True)
rules_customers = association_rules(frequent_itemsets_customers, metric="confidence", min_threshold=0.6)

print(frequent_itemsets_customers)
print(rules_customers)

解释

  • 频繁项集frequent_itemsets_customers展示了支持度大于或等于0.3的项集。
  • 关联规则rules_customers展示了置信度大于或等于0.6的关联规则。

异常检测

Apriori算法在异常检测中也有应用,通过识别正常的行为模式,可以检测出偏离这些模式的异常行为。

示例

假设我们有以下信用卡交易数据:

交易ID商品
1{食品, 饮料}
2{食品, 饮料, 电子产品}
3{食品, 饮料}
4{食品, 饮料}
5{食品, 饮料, 电子产品}

我们可以使用Apriori算法来找出哪些商品组合是异常的。

# 信用卡交易数据
credit_card_transactions = [
    ['食品', '饮料'],
    ['食品', '饮料', '电子产品'],
    ['食品', '饮料'],
    ['食品', '饮料'],
    ['食品', '饮料', '电子产品']
]

# 应用Apriori算法
frequent_itemsets_credit = apriori(df, min_support=0.2, use_colnames=True)
rules_credit = association_rules(frequent_itemsets_credit, metric="confidence", min_threshold=0.5)

# 异常检测
# 假设任何包含'电子产品'的规则都是异常的
anomalies = rules_credit[rules_credit['antecedents'].apply(lambda x: '电子产品' in x)]
print(anomalies)

解释

  • 频繁项集frequent_itemsets_credit展示了支持度大于或等于0.2的项集。
  • 关联规则rules_credit展示了置信度大于或等于0.5的关联规则。
  • 异常检测:通过筛选包含特定商品(如’电子产品’)的规则,我们可以识别出异常的交易模式。

以上示例展示了Apriori算法在不同场景下的应用,通过调整支持度和置信度的阈值,可以发现不同强度的关联规则,从而为决策提供数据支持。

关联规则学习的优化技术

Apriori算法的局限性

Apriori算法是关联规则学习中最早且最著名的算法之一,它基于频繁项集的性质,通过多次扫描数据集来发现所有频繁项集。然而,Apriori算法在处理大规模数据集时存在明显的局限性:

  1. 多次扫描数据集:Apriori算法需要多次遍历数据集,每次遍历是为了找出不同大小的频繁项集,这在大数据集上会导致计算效率低下。
  2. 候选项集生成:算法在每次迭代中生成大量的候选项集,这不仅消耗内存,而且增加了计算复杂度。
  3. 频繁项集的存储:随着频繁项集的大小增加,存储这些项集所需的内存也会显著增加,特别是在高维数据集上。

示例说明

假设我们有一个包含10000个事务的超市购物数据集,每个事务平均包含10个商品。使用Apriori算法,我们可能需要进行多次扫描来找出所有频繁项集,这将导致大量的计算和存储开销。

FP-growth算法的介绍

为了解决Apriori算法的局限性,FP-growth算法被提出。FP-growth算法通过构建一个FP树(频繁模式树)来压缩数据集,从而减少扫描数据集的次数,提高计算效率。FP树是一种前缀树,它能够有效地存储频繁项集的信息,通过一次扫描数据集构建FP树,然后通过FP树挖掘频繁项集,避免了生成大量候选项集的步骤。

FP-growth算法的关键步骤

  1. 第一遍扫描数据集:计算每个项的频率,找出频繁项。
  2. 构建FP树:使用频繁项构建FP树,每个事务在树中表示为一条路径。
  3. 挖掘频繁项集:通过FP树的条件模式基和条件FP树来挖掘频繁项集。

示例代码

from pyfpgrowth import fpgrowth

# 示例数据集
transactions = [
    ['牛奶', '面包', '黄油'],
    ['面包', '黄油'],
    ['牛奶', '面包', '黄油', '鸡蛋'],
    ['面包', '鸡蛋'],
    ['牛奶', '黄油', '鸡蛋'],
]

# 设置最小支持度
min_support = 2

# 构建FP树并挖掘频繁项集
frequent_patterns, _ = fpgrowth(transactions, min_support=min_support, verbose=1)

# 输出频繁项集
print("频繁项集:", frequent_patterns)

代码解释

在上述代码中,我们使用了pyfpgrowth库来实现FP-growth算法。首先定义了一个简单的交易数据集,然后设置了最小支持度为2,这意味着任何频繁项集至少在2个事务中出现。通过调用fpgrowth函数,我们构建了FP树并挖掘出了所有满足最小支持度的频繁项集。

优化算法的比较分析

Apriori与FP-growth的性能对比

  • Apriori:需要多次扫描数据集,生成大量候选项集,计算和存储开销大。
  • FP-growth:仅需两次扫描数据集,通过构建FP树压缩数据,减少计算和存储开销。

适用场景分析

  • Apriori:适用于数据集较小,频繁项集较少的情况。
  • FP-growth:适用于大规模数据集,频繁项集较多的情况,特别是在内存有限的环境下。

实验结果

在处理大规模数据集时,FP-growth算法通常比Apriori算法更快,内存使用也更少。例如,在一个包含1000000个事务的数据集上,FP-growth算法可能只需要几分钟就能完成计算,而Apriori算法可能需要几小时甚至更长时间。

结论

虽然Apriori算法在关联规则学习中具有开创性,但其在处理大规模数据集时的局限性明显。相比之下,FP-growth算法通过构建FP树来压缩数据,显著提高了计算效率和减少了存储需求,因此在实际应用中,特别是在大数据分析领域,FP-growth算法更受欢迎。


以上内容详细介绍了关联规则学习中Apriori算法的局限性,以及FP-growth算法的原理和优势,通过示例代码展示了FP-growth算法的使用方法,并对比分析了两种算法的性能和适用场景。

实战演练:Apriori算法在Python中的实现

数据预处理

在应用Apriori算法之前,数据预处理是一个关键步骤。数据通常需要转换为事务型数据格式,即每个事务是一组同时出现的项目。例如,考虑一个超市的购物篮数据:

# 示例数据
transactions = [
    ['牛奶', '面包', '黄油'],
    ['面包', '苹果', '香蕉'],
    ['牛奶', '苹果'],
    ['牛奶', '面包', '苹果'],
    ['面包', '黄油'],
    ['牛奶', '苹果', '香蕉'],
    ['面包', '苹果', '香蕉'],
    ['牛奶', '面包', '黄油'],
    ['苹果', '香蕉'],
    ['牛奶', '面包', '苹果', '香蕉']
]

数据预处理还包括处理缺失值、异常值和数据标准化。对于关联规则学习,我们通常不需要进行数值型数据的标准化,因为算法关注的是项目之间的关联,而不是数值大小。

使用mlxtend库进行Apriori算法实现

mlxtend是一个Python库,提供了许多机器学习和数据挖掘的实用工具,包括Apriori算法。下面是如何使用mlxtend来实现Apriori算法的示例:

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules

# 使用TransactionEncoder对数据进行编码
te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_)

# 应用Apriori算法
frequent_itemsets = apriori(df, min_support=0.3, use_colnames=True)
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

# 查看结果
print(frequent_itemsets)
print(rules)

在这个示例中,我们首先使用TransactionEncoder将事务型数据转换为适合Apriori算法的DataFrame格式。然后,我们调用apriori函数来生成频繁项集,其中min_support参数定义了最小支持度。最后,我们使用association_rules函数来生成关联规则,metric参数定义了评估规则的度量标准,min_threshold参数定义了最小置信度。

结果分析与规则选择

Apriori算法生成的关联规则通常包含支持度、置信度和提升度等度量。支持度表示一个项集在所有事务中出现的频率,置信度表示在包含前提项的事务中,同时包含结果项的概率,提升度则衡量了规则的关联强度是否高于随机事件的关联强度。

在结果分析阶段,我们可以通过设置不同的阈值来筛选出感兴趣的规则。例如,我们可以选择置信度高于0.7的规则,这表示在包含前提项的事务中,结果项出现的概率至少为70%。

# 选择置信度高于0.7的规则
high_confidence_rules = rules[rules['confidence'] >= 0.7]

# 打印高置信度规则
print(high_confidence_rules)

在选择规则时,我们还应该考虑规则的实际意义和业务价值。例如,一个高置信度的规则可能表明“购买牛奶的顾客也倾向于购买面包”,这在超市营销策略中可能非常有用。

示例规则分析

假设我们从上述代码中得到了以下规则:

antecedentsconsequentssupportconfidencelift
{‘牛奶’}{‘面包’}0.50.51.67
{‘面包’}{‘黄油’}0.40.81.33
{‘牛奶’, ‘苹果’}{‘香蕉’}0.30.751.5

从这些规则中,我们可以观察到:

  • 规则“牛奶 -> 面包”具有50%的支持度和50%的置信度,提升度为1.67,表明购买牛奶的顾客购买面包的概率高于随机事件的概率。
  • 规则“面包 -> 黄油”具有40%的支持度和80%的置信度,提升度为1.33,这表明购买面包的顾客购买黄油的概率也高于随机事件的概率。
  • 规则“牛奶, 苹果 -> 香蕉”具有30%的支持度和75%的置信度,提升度为1.5,这表明同时购买牛奶和苹果的顾客购买香蕉的概率高于随机事件的概率。

通过这些规则,超市可以调整商品布局,例如将牛奶和面包放得更近,以促进销售。

总结

在本实战演练中,我们详细介绍了如何在Python中使用mlxtend库实现Apriori算法,包括数据预处理、算法实现和结果分析。通过设置不同的阈值,我们可以筛选出具有高置信度的关联规则,这些规则对于理解数据中的模式和制定业务策略具有重要意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值