前沿
SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。
一:SWAP模型及数据要求
1.SWAP模型理论框架
2.Richard方程与水分循环
3.溶质输运与土壤温度计算
4.作物生长模块
5.模型输入数据要求
6.模型应用范围与实例
7.与其它类似模型的比较(优缺点)
二:数据制备与模型运行
1.气象数据制备
2.土壤数据制备
3.农作物参数
4.灌溉的输入
5.其它情况处理(降雪等)
5.模型输出分析
1:牧草生长模拟
2:春小麦生长模拟与灌溉需水分析
三:基于R模型敏感性分析与贝叶斯优化
1.R语言中调用SWAP模型
2.敏感性分析方法(Morris方法)
3.优化及启发式优化算法理论
4.贝叶斯优化方法
3:基于遗传算法SWAP模型参数自动优化
4:SWAP参数敏感性代码分析
5:基于贝叶斯优化的SWAP模型自动优化
四:基于Fortran源代码分析
1.现代Fortran基础
2.SWAP模型Fortran代码编译方法(WINDOWS及Linux)
3.SWAP模型代码特点及结构分析
6:模型入口分析
7:模型主要计算功能实现
五:气候数据降尺度与变化影响分析
1.CMIP计划及下载
2.气候数据降尺度方法
3.未来气候数据的生成(基于CMIP5及CMIP6)及其输入
8:基于R语言的降尺度方法
9:不同未来气候情景对水稻生产的影响分析
六:AI大语言模型在建模中的应用
1.各类大语言模型的优点与缺点分析
2.在建模中应用大语言模型辅助生成输入文件
3.本地大语言模型及知识库的简单配置
4.对于(水环境、水文及农业)模型研究者在大语言模型上的发展方向建议
10:运用大语言模型解释模型输入参数
11:运用大语言模型辅助生成输入文件
12:运用大语言模型注释及编写代码