LSTM持续发力!与Transformer结合,一举拿下Nature!

LSTM+Transformer是非常热门且好发顶会的方向!

目前,其在CV、NLP、时间序列等领域,都取得了令人瞩目的成果。比如模型LTARM,直接登顶Nature子刊,在多任务预测中,性能和计算效率都远超SOTA;ICCV上的SwinLSTM模型,则误差狂降584%倍……

主要在于,这种结合,既能处理长期依赖,又能并行处理整个序列,大大提高了计算效率。同时,LSTM与Transformer的互补性,也使得混合模型在处理长序列和短序列时都能取得更好的效果,具有更好的泛化能力和鲁棒性。

为了让伙伴们能够掌握这种结合的精髓,落地到自己的顶会中,我特地给大家整理了13种前沿创新思路,还配上了开源代码!

论文原文+开源代码需要的同学看文末

论文:Multi-Channel Multi-Step Spectrum Prediction Using Transformer and Stacked Bi-LSTM
内容

该论文提出了一种基于Transformer和堆叠双向长短期记忆网络(Bi-LSTM)的多通道多步谱预测方法,名为TSB。该方法利用多头注意力机制和堆叠Bi-LSTM来构建基于编码器-解码器架构的新Transformer,以深度捕捉多通道谱数据的长期依赖性。通过在真实模拟平台上生成的数据集进行广泛实验,表明TSB算法的性能优于基线算法。

论文:FocDepthFormer: Transformer with LSTM for Depth Estimation from Focus
内容

该论文提出的FocDepthFormer是一种基于Transformer的深度估计网络,它通过整合Transformer编码器、LSTM模块和CNN解码器来处理焦点堆叠图像。该模型利用自注意力机制捕捉非局部空间特征,并使用LSTM处理不同长度的图像堆叠,从而提高对任意长度焦点堆叠的泛化能力。

论文:SwinLSTM:Improving Spatiotemporal Prediction Accuracy using Swin Transformer and LSTM
内容

该论文提出的SwinLSTM是一种新型的循环单元,它结合了Swin Transformer模块和简化的LSTM,用于提高时空预测任务的准确性。该模型通过自注意力机制捕捉全局空间依赖,从而更有效地捕获时空依赖关系,在多个评估指标上优于现有的ConvLSTM等方法,展现了显著的预测性能提升。

论文:Deep Analysis of Time Series Data for Smart Grid Startup Strategies: A Transformer-LSTM-PSO Model Approach
内容

该论文提出了一种基于Transformer-LSTM-PSO模型的智能电网启动策略深度分析方法。该模型结合了Transformer的自注意力机制、LSTM的时间序列建模能力和粒子群优化算法的参数调整功能,旨在更有效地捕捉电网启动方案中的复杂时间关系,通过在多个数据集上的实验,该模型在预测准确性和效率上显示出显著的改进。

 关注下方《AI科研圈圈》

回复“LMTS”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

### TransformerLSTM结合的混合模型 #### 架构设计 RS-LSTM-Transformer模型是一种用于改进降雨径流过程模拟的混合模型[^1]。此模型通过组合长短时记忆网络(LSTM)和变换器(Transformer),能够有效提升对于复杂时间序列数据的理解能力。 在具体架构上,通常采用两种主要方式来集成这两种技术: - **串联结构**:首先应用LSTM层处理输入的时间序列数据,从中抽取短期动态特性;接着把经过初步编码后的特征传递给后续的Transformer组件,在那里进一步探索长期依赖性和更广泛的上下文信息[^2]。 - **并联结构**:另一种策略是在同一层次同时部署独立运作但相互补充的LSTM单元组以及自注意力机制主导下的多头Attention模块。两者分别负责捕捉不同尺度上的模式变化,并最终汇总其输出以形成综合表征向量供下游任务使用。 #### 实现方法 针对上述提到的不同类型的融合方案,以下是基于MATLAB平台的一个简单实例化流程说明,展示了如何构建一个基本版次级连接式的Transformers-LSTMs框架来进行多变量时间序列预测: ```matlab % 定义超参数 inputSize = ...; % 输入维度大小 hiddenUnits_LSTM = ...; % LSTM隐藏节点数 numHeads_Transformer = ...; % 变换器头部数量 ffn_units = ...; % 前馈神经网络单位数目 dropout_rate = ...; % Dropout比率 % 创建LSTMlstmLayer = lstmLayer(hiddenUnits_LSTM,'InputMode','sequence'); % 添加全连接层转换尺寸以便于送入transformer fc_layer_for_transformer_input = fullyConnectedLayer(numHiddenUnits=numHeads_Transformer*inputSize); % 初始化位置编码 Positional Encoding (PE) posEncoding = createPositionalEncoding(maxLen, d_model=inputSize*numHeads_Transformer); % 设计MultiHead Attention block 和 Feed Forward Network blocks... multiheadAttnBlock = multiHeadSelfAttention(inputDim=d_model, num_heads=numHeads_Transformer); feedForwardNet = feedforwardNetwork(d_model, ffn_units=ffn_units, dropout_rate=dropout_rate); % 组装整个流水线 Pipeline assembly model = sequential(); addLayers(model,[lstmLayer fc_layer_for_transformer_input posEncoding multiheadAttnBlock feedForwardNet]); function pe = createPositionalEncoding(seq_len,d_model) angle_rads = @(i,j)(j / power(10000,(2*(floor(i/2))/d_model))); angles = arrayfun(angle_rads, repmat((1:d_model)',seq_len,1),repmat((1:seq_len),d_model,1)); sines = sin(angles(:,1:2:end)); coses = cos(angles(:,2:2:end)); pe = zeros([size(sines)]); pe(:,1:2:end) = sines; pe(:,2:2:end) = coses; end ``` 请注意这只是一个简化版本的概念验证代码片段,实际项目中可能还需要考虑更多细节优化配置选项。 #### 对比分析 当比较纯LSTM模型加入了Transformer元素之后形成的增强型体系时,后者往往展现出以下几个方面的优势: - 更强的数据理解力:得益于自我注意机制的存在,使得新架构能够在更大范围内识别出潜在的相关性,而不仅仅局限于相邻时刻之间的关联度评估; - 提升泛化性能:由于引入了更多的抽象级别,因此即使面对未曾见过的新样本也能保持较好的适应性和鲁棒性; - 改善训练效率:尽管初期计算成本有所增加,但从长远来看,因为减少了梯度消失等问题的发生概率,所以整体收敛速度反而更快一些。 然而值得注意的是,这些好处并非无条件获得——成功的实践离不开精心的设计决策和技术选型考量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值