2025发论文,强烈推荐大家关注这个顶会新热门:机器学习+因果推断!这不,剑桥大学便通过这两者结合,一举拿下ICLR25!
主要在于:一方面,医疗、金融、交通预测等重要领域对因果性需求强烈。把机器学习和因果推断结合,则能使两者优势互补,从而提升模型的准确性、可解释性,自己用户对模型的信任性。另一方面,该思路改进比较简单,好上手,且能够跨学科合作,创新机会多。比如通过结合结构因果模型与图神经网络,便能是新思路!
目前好中稿方向主要有:生成式AI+因果推断;强化学习+动态因果建模;小样本因果推断……为给大家节省时间,提高效率,我还给大家准备了11篇必读高分论文,并提供了开源代码,一起来看!
论文原文+开源代码需要的同学看文末
论文:Comparative analysis of correlation and causality inference in water quality problems with emphasis on TDS Karkheh River in Iran
内容
该论文研究了伊朗西南部的Karkheh河的水质问题,特别是总溶解固体(TDS)作为主要指标。研究采用了“后门线性回归”方法来建模因果关系,并通过预测建模和可解释性建模来展示相关性和因果关系的差异,这种基于ML的因果推断为水资源管理和政策制定提供了新的视角和工具。
论文:ESTIMATION OF SINGLE-CELL AND TISSUE PERTURBA TION EFFECT IN SPATIAL TRANSCRIPTOMICS VIA SPA TIAL CAUSAL DISENTANGLEMENT
内容
该论文介绍了一个名为Celcomen的新型生成图神经网络模型,它基于数学因果性原理,能够从空间转录组学和单细胞数据中解耦细胞内和细胞间的基因调控关系,并生成空间反事实(counterfactuals),为研究人类健康提供潜在应用。
论文:Estimating Probabilities of Causation with Machine Learning Models
内容
该论文探讨了如何利用机器学习模型来预测因果概率,特别是针对数据不足的亚群体,介绍了因果概率的重要性,并回顾了Tian和Pearl关于因果概率的定义和研究,包括必要性和充分性概率(PN和PS)以及必要性和充分性概率(PNS),构建并发布了第一个专门用于评估机器学习模型预测PNS界限的数据集,并提出了未来研究方向,包括探索更复杂因果结构下的模型性能和实际应用中的数据收集方法。
论文:Do weactually understand the impact of renewables on electricity prices? A causal inference approach
内容
该论文了研究可再生能源(风能和太阳能)对英国电力市场价格的影响,采用了一种创新的因果推断方法——局部部分线性双重机器学习(DML)框架。发现风能和太阳能对电力价格的影响是非线性的,并且随时间而变化,为政策制定者提供了关于可再生能源对电力市场影响的实证分析,有助于设计更有效的能源政策和市场干预措施。
关注下方《人工智能学起来》
回复“因果ML”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏