Mamba+GNN双热点联合!发文直冲A会!人人可学!

Mamba与GNN结合,是近来的新热门,好发不卷!

该结合通过发挥两者的优势,不仅能提高处理图数据的性能和效率,还能拓展应用场景。比如模型STG-Mamba便实现了FLOPs狂降354%的效果;模型SAMBA则性能提升了85.38%

具体来说,GNN擅长捕捉图结构中的节点关系和全局结构信息。Mamba在处理长序列数据方面表现出色。两者结合后,Mamba提供的时序特征可以作为GNN的输入,帮助模型更深入地理解数据中的时间演变和节点间关系。此外,Mamba线性复杂度的特性,也能帮助模型提高计算效率。

目前,主流的结合方法主要有:模型串联、联合优化等。为让大家能够紧跟前沿,找到更多idea启发,我给大家准备了8种前沿创新思路和源码!

论文原文+开源代码需要的同学看文末

论文:Graph-Mamba:TowardsLong-RangeGraphSequenceModeling with Selective State Spaces
内容

该论文提出的Graph-Mamba是一种新型的图网络模型,它通过整合选择性状态空间模型(SSM)来提高对长距离依赖关系的建模能力,特别是在大型图数据中。该模型采用输入依赖的节点选择机制,以数据驱动的方式进行图稀疏化,显著提高了预测性能,同时降低了计算成本和GPU内存消耗。

论文:MAMBAMEETSFINANCIALMARKETS:AGRAPH-MAMBAAPPROACHFORSTOCK PRICE PREDICTION
内容

该论文介绍的SAMBA是一种新型的股票价格预测框架,它结合了Mamba架构和图神经网络(GNN),通过利用双向Mamba块捕获历史价格数据中的长期依赖关系,并使用自适应图卷积建模每日股票特征之间的依赖关系,实现了近似线性的计算复杂度。

论文:STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model
内容

该论文描述的STG-Mamba是一种用于空间-时间图(STG)数据学习的新型深度学习模型,它通过结合选择性状态空间模型(SSSM)和图神经网络(GNN),有效地捕捉STG数据的动态和非平稳特性。该模型引入了空间-时间选择性状态空间模块(ST-S3M)来精确关注选定的STG潜在特征,并通过卡尔曼滤波图神经网络(KFGN)从不同时间粒度动态集成和升级STG嵌入。

论文:Hamba: Single-view 3D Hand Reconstruction with Graph-guided Bi-Scanning Mamba
内容

该论文介绍的Hamba是一个基于Mamba模型的新型3D手部重建框架,它结合了图学习和状态空间建模来提高从单目RGB图像中重建3D手部网格的鲁棒性和准确性。该框架通过图引导的双向扫描和有效的令牌选择,捕捉手部关节之间的空间关系和序列,显著提升了重建性能。

 关注下方《人工智能学起来》

回复“MGNN”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值