今天给大家推荐一个好发顶会的方向:Mamba+图像增强!
相比传统方法,Mamba更能适应当下图像增强复杂和多样化的需求,且在提高模型性能和计算效率方面,具有不可替代的优势。
具体点说,在图像中,像素之间往往存在复杂的远距离关联,而Mamba基于状态空间模型,则非常擅长处理序列数据中的长程依赖问题,它能很好地捕捉到这些远距离的像素信息,从而更好地理解图像的整体结构和上下文,进而准确地恢复和增强图像细节。此外,其线性复杂度的特点,也对加快图像增强的处理速度大有裨益。比如模型Wave-Mamba,便在在超高清图像的低光增强任务中,实现了性能和效率双飙升!
为让大家能够紧跟领域前沿,找到更多灵感启发,早日中稿,我给大家准备了16种创新思路和源码,一起来看!
论文原文+开源代码需要的同学看文末
论文:LLEMamba: Low-Light Enhancement via Relighting-Guided Mamba with Deep Unfolding Network
内容
该论文提出了一种基于Mamba架构和Retinex理论的低光照图像增强方法(LLEMamba),通过将Retinex模型的迭代优化过程嵌入深度展开网络,并引入Mamba架构来实现高效的全局视觉上下文建模和稳定的闭式解优化,在多个基准数据集上均优于现有先进方法,具有更高的图像质量和更低的计算复杂度。
论文:Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement
内容
该论文提出了一种名为Wave-Mamba的新型超高清(UHD)低光照图像增强方法,通过结合小波变换和状态空间模型(SSM)来解决现有方法因高倍下采样导致的信息丢失问题。Wave-Mamba利用小波变换的特性,将图像分解为低频和高频子带,并分别设计了低频状态空间块(LFSSBlock)和高频增强块(HFEBlock)来高效处理全局信息和恢复高频细节。
论文:Spectral-Spatial Mamba for Hyperspectral Image Classification
内容
该论文提出了一种基于Mamba模型的高光谱图像分类方法——SS-Mamba,旨在利用Mamba的高效序列建模能力来处理高光谱图像的光谱-空间特征。SS-Mamba通过将高光谱图像分解为空间和光谱token序列,并利用多层堆叠的Mamba块进行特征提取和融合。
论文:FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining
内容
该论文提出了一种名为FreqMamba的图像去雨方法,通过结合Mamba模型和频域分析来解决图像去雨任务中的全局和局部退化问题。FreqMamba引入了三分支结构,包括空间Mamba、频带Mamba和傅里叶全局建模,分别用于提取图像细节、频域相关性和全局退化模式。
关注下方《人工智能学起来》
回复“曼巴图像”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏