如何使用深度学习框架训练自己的数据集之——遥感农田地块分割数据集实现可视化及评估等

20ce5b6227464f6d9ec2e97d9cb388a6.png1:sentinel2卫星,224×224尺寸,共1991对图像2:超高分辨率影像,500×500尺寸,1200对图像3:国内东北一号地块分割,共16张大tif遥感农田分割数据集

遥感农田地块分割合集 数据1:sentinel2卫星,224×224尺寸,共1991对图像。 数据2:超高分辨率影像,500×500尺寸,1200对图像。 数据3:国内吉林一号地块分割,共16张大尺幅tif影像,并提供shp标注文件fe387f2c96364fce9e1f31bf13f2cfa7.png

58e616a46ef84917a076ad8d47b0c1d2.png

遥感农田地块分割数据集介绍

e9daa18af2294e2aa1482436dbb77a2c.png

数据集概述0dad491d98974f6897238bd41067a02a.png

这三个数据集专注于遥感农田地块分割任务,分别来源于不同的卫星和传感器,具有不同的空间分辨率和覆盖范围。以下是三个数据集的具体介绍:

数据集1:Sentinel-2 卫星图像

特点

  • 来源:Sentinel-2 卫星
  • 图像尺寸:224×224像素
  • 图像数量:1991对图像(通常包括原始图像和对应的标签图像)

用途

Sentinel-2 是欧洲航天局(ESA)的Copernicus计划的一部分,提供了高分辨率的多光谱图像,适用于多种遥感应用,如土地利用分类、作物监测、环境管理等。这些图像通常具有较高的空间分辨率(最高可达10米),并且包含多个波段,有助于区分不同的地面特征。

数据集结构

假设数据集的根目录为 sentinel2_plots_dataset,其结构可能如下所示:

sentinel2_plots_dataset/
├── images/
│   ├── image_0001.tif
│   ├── image_0002.tif
│   └── ...
├── labels/
│   ├── label_0001.tif
│   ├── label_0002.tif
│   └── ...
└── data_info.txt  # 数据集信息文件

数据集信息文件 data_info.txt

此文件可能包含关于数据集的元信息,例如采集日期、地理坐标等。

数据集2:超高分辨率影像

特点

  • 图像尺寸:500×500像素
  • 图像数量:1200对图像(同样包括原始图像和对应的标签图像)

用途

超高分辨率的影像通常具有更高的细节水平,非常适合于精细的地块分割任务。这些图像可能来自于商用卫星、无人机或者其他高精度遥感平台。

数据集结构

假设数据集的根目录为 ultra_high_res_plots_dataset,其结构可能如下所示:

ultra_high_res_plots_dataset/
├── images/
│   ├── image_0001.tif
│   ├── image_0002.tif
│   └── ...
├── labels/
│   ├── label_0001.tif
│   ├── label_0002.tif
│   └── ...
└── data_info.txt  # 数据集信息文件

数据集信息文件 data_info.txt

此文件可能包含关于数据集的元信息,例如采集日期、地理坐标等。

数据集3:吉林一号地块分割

特点

  • 图像来源:吉林一号卫星
  • 图像数量:16张大尺幅的TIF影像
  • 标注文件:提供SHP格式的标注文件

用途

吉林一号卫星是中国自主研制的小型遥感卫星,具有较高的空间分辨率,适用于农业监测、灾害评估等领域。这些图像通常具有较大的覆盖面积,并且提供了矢量格式的标注文件,方便进行地块分割和后续分析。

数据集结构

假设数据集的根目录为 jilin1_plots_dataset,其结构可能如下所示:

jilin1_plots_dataset/
├── images/
│   ├── image_0001.tif
│   ├── image_0002.tif
│   └── ...
├── annotations/
│   ├── annotation_0001.shp
│   ├── annotation_0002.shp
│   └── ...
└── data_info.txt  # 数据集信息文件

数据集信息文件 data_info.txt

此文件可能包含关于数据集的元信息,例如采集日期、地理坐标等。

数据集使用建议

  1. 预处理:由于数据集来自不同的卫星和传感器,可能需要进行标准化处理,如直方图均衡化、归一化等,以便于统一数据格式。
  2. 分割算法选择:根据数据集的特点选择合适的分割算法,如U-Net、Mask R-CNN等深度学习模型。
  3. 模型训练:使用提供的标签图像作为监督信息训练模型,注意数据增强以提高模型的泛化能力。
  4. 模型评估:使用验证集评估模型的性能,并调整超参数以优化模型表现。
  5. 测试集评估:最后,在测试集上评估模型的最终效果。

应用案例

这些数据集可以应用于以下几种场景:

  • 农作物监测:监测作物生长状况、健康程度等。
  • 灾害评估:评估自然灾害对农田的影响。
  • 土地利用分类:对不同类型的地块进行分类,如耕地、林地、草地等。

总结

这三个数据集提供了丰富的遥感图像资源,适用于农田地块分割等多种遥感应用。通过合理的预处理和模型训练,可以有效地利用这些数据集来解决实际问题。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值