Brats2021脑肿瘤分割,AI图像分割
1
1
BraTS 2021脑肿瘤分割的AI图像分割系统是一个复杂的任务,涉及到数据准备、模型选择、训练和评估等多个步骤。如何使用深度学习框架(如PyTorch)来实现,并附上详细的代码示例。
环境搭建
首先,确保安装了必要的库:
pip install torch torchvision numpy nibabel scikit-image
数据准备
下载和解压数据
从BraTS 2021官方网站下载数据集,并解压到指定目录。
数据预处理
编写脚本对数据进行预处理,包括归一化、裁剪等操作。
import os
import nibabel as nib
import numpy as np
from skimage.transform import resize
def load_data(data_dir):
images = []
masks = []
for patient_dir in os.listdir(data_dir):
patient_path = os.path.join(data_dir, patient_dir)
flair = nib.load(os.path.join(patient_path, patient_dir + '_flair.nii.gz')).get_fdata()
t1 = nib.load(os.path.join(patient_path, patient_dir + '_t1.nii.gz')).get_fdata()
t1ce = nib.load(os.path.join(patient_path, patient_dir + '_t1ce.nii.gz')).get_fdata()
t2 = nib.load(os.path.join(patient_path, patient_dir + '_t2.nii.gz')).get_fdata()
seg = nib.load(os.path.join(patient_path, patient_dir + '_seg.nii.gz')).get_fdata()
# Normalize and resize
flair = (flair - flair.mean()) / flair.std()
t1 = (t1 - t1.mean()) / t1.std()
t1ce = (t1ce - t1ce.mean()) / t1ce.std()
t2 = (t2 - t2.mean()) / t2.std()
flair = resize(flair, (128, 128, 128), mode='constant')
t1 = resize(t1, (128, 128, 128), mode='constant')
t1ce = resize(t1ce, (128, 128, 128), mode='constant')
t2 = resize(t2, (128, 128, 128), mode='constant')
seg = resize(seg, (128, 128, 128), mode='constant', order=0)
images.append(np.stack([flair, t1, t1ce, t2], axis=-1))
masks.append(seg)
return np.array(images), np.array(masks)
data_dir = 'path/to/your/data'
images, masks = load_data(data_dir)
模型构建
使用3D U-Net作为基础模型。
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv3d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm3d(out_channels),
nn.ReLU(inplace=True),
nn.Conv3d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm3d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet3D(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet3D, self).__init__()
self.inc = DoubleConv(n_channels, 64)
self.down1 = nn.MaxPool3d(2)
self.conv1 = DoubleConv(64, 128)
self.down2 = nn.MaxPool3d(2)
self.conv2 = DoubleConv(128, 256)
self.up1 = nn.ConvTranspose3d(256, 128, kernel_size=2, stride=2)
self.conv3 = DoubleConv(256, 128)
self.up2 = nn.ConvTranspose3d(128, 64, kernel_size=2, stride=2)
self.conv4 = DoubleConv(128, 64)
self.outc = nn.Conv3d(64, n_classes, kernel_size=1)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x2 = self.conv1(x2)
x3 = self.down2(x2)
x3 = self.conv2(x3)
x = self.up1(x3)
x = torch.cat([x, x2], dim=1)
x = self.conv3(x)
x = self.up2(x)
x = torch.cat([x, x1], dim=1)
x = self.conv4(x)
x = self.outc(x)
return F.softmax(x, dim=1)
model = UNet3D(n_channels=4, n_classes=4)
训练模型
编写训练脚本来训练模型。
import torch.optim as optim
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 50
batch_size = 2
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for i in range(0, len(images), batch_size):
inputs = torch.tensor(images[i:i+batch_size]).to(device).float()
labels = torch.tensor(masks[i:i+batch_size]).long().to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch+1}, Loss: {running_loss / len(images)}')
性能评估
使用验证集评估模型性能。
model.eval()
with torch.no_grad():
correct = 0
total = 0
for i in range(len(val_images)):
inputs = torch.tensor(val_images[i:i+1]).to(device).float()
labels = torch.tensor(val_masks[i:i+1]).long().to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the validation set: {100 * correct / total}%')
基于BraTS 2021数据集构建脑肿瘤分割系统的完整流程。