如何使用深度学习框架(如PyTorch) BraTS 2021脑肿瘤分割的AI图像分割系统 Brats2021脑肿瘤分割,AI图像分割

Brats2021脑肿瘤分割,AI图像分割在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
BraTS 2021脑肿瘤分割的AI图像分割系统是一个复杂的任务,涉及到数据准备、模型选择、训练和评估等多个步骤。如何使用深度学习框架(如PyTorch)来实现,并附上详细的代码示例。

环境搭建

首先,确保安装了必要的库:

pip install torch torchvision numpy nibabel scikit-image

数据准备

下载和解压数据

从BraTS 2021官方网站下载数据集,并解压到指定目录。

数据预处理

编写脚本对数据进行预处理,包括归一化、裁剪等操作。

import os
import nibabel as nib
import numpy as np
from skimage.transform import resize

def load_data(data_dir):
    images = []
    masks = []
    for patient_dir in os.listdir(data_dir):
        patient_path = os.path.join(data_dir, patient_dir)
        flair = nib.load(os.path.join(patient_path, patient_dir + '_flair.nii.gz')).get_fdata()
        t1 = nib.load(os.path.join(patient_path, patient_dir + '_t1.nii.gz')).get_fdata()
        t1ce = nib.load(os.path.join(patient_path, patient_dir + '_t1ce.nii.gz')).get_fdata()
        t2 = nib.load(os.path.join(patient_path, patient_dir + '_t2.nii.gz')).get_fdata()
        seg = nib.load(os.path.join(patient_path, patient_dir + '_seg.nii.gz')).get_fdata()

        # Normalize and resize
        flair = (flair - flair.mean()) / flair.std()
        t1 = (t1 - t1.mean()) / t1.std()
        t1ce = (t1ce - t1ce.mean()) / t1ce.std()
        t2 = (t2 - t2.mean()) / t2.std()

        flair = resize(flair, (128, 128, 128), mode='constant')
        t1 = resize(t1, (128, 128, 128), mode='constant')
        t1ce = resize(t1ce, (128, 128, 128), mode='constant')
        t2 = resize(t2, (128, 128, 128), mode='constant')
        seg = resize(seg, (128, 128, 128), mode='constant', order=0)

        images.append(np.stack([flair, t1, t1ce, t2], axis=-1))
        masks.append(seg)

    return np.array(images), np.array(masks)

data_dir = 'path/to/your/data'
images, masks = load_data(data_dir)

模型构建

使用3D U-Net作为基础模型。

import torch
import torch.nn as nn
import torch.nn.functional as F

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv3d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm3d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv3d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm3d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.conv(x)

class UNet3D(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(UNet3D, self).__init__()
        self.inc = DoubleConv(n_channels, 64)
        self.down1 = nn.MaxPool3d(2)
        self.conv1 = DoubleConv(64, 128)
        self.down2 = nn.MaxPool3d(2)
        self.conv2 = DoubleConv(128, 256)
        self.up1 = nn.ConvTranspose3d(256, 128, kernel_size=2, stride=2)
        self.conv3 = DoubleConv(256, 128)
        self.up2 = nn.ConvTranspose3d(128, 64, kernel_size=2, stride=2)
        self.conv4 = DoubleConv(128, 64)
        self.outc = nn.Conv3d(64, n_classes, kernel_size=1)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x2 = self.conv1(x2)
        x3 = self.down2(x2)
        x3 = self.conv2(x3)
        x = self.up1(x3)
        x = torch.cat([x, x2], dim=1)
        x = self.conv3(x)
        x = self.up2(x)
        x = torch.cat([x, x1], dim=1)
        x = self.conv4(x)
        x = self.outc(x)
        return F.softmax(x, dim=1)

model = UNet3D(n_channels=4, n_classes=4)

训练模型

编写训练脚本来训练模型。

import torch.optim as optim

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 50
batch_size = 2

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for i in range(0, len(images), batch_size):
        inputs = torch.tensor(images[i:i+batch_size]).to(device).float()
        labels = torch.tensor(masks[i:i+batch_size]).long().to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    print(f'Epoch {epoch+1}, Loss: {running_loss / len(images)}')

性能评估

使用验证集评估模型性能。

model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for i in range(len(val_images)):
        inputs = torch.tensor(val_images[i:i+1]).to(device).float()
        labels = torch.tensor(val_masks[i:i+1]).long().to(device)

        outputs = model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print(f'Accuracy of the network on the validation set: {100 * correct / total}%')

基于BraTS 2021数据集构建脑肿瘤分割系统的完整流程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值