分类模型训练小麦病害分类数据集 通过使用ResNet50训练7类农业病害小麦叶片病害图像分类数据集 来识别检测小麦叶片病害正常、秆锈病、白粉病、黑穗病、根腐病、麦头枯萎病、叶枯病
以下文字及代码仅供参考。
农业病害小麦图像分类数据集 7类
7个类别
类别名字::正常、秆锈病、白粉病、黑穗病、根腐病、麦头枯萎病、叶枯病
图像是4087张,其中训练集是3304张,验证集测是783张
图像分辨率是800x800
使用ResNet50模型训练一个包含7类农业病害小麦图像的分类器,我们需要遵循几个步骤。这包括加载数据、定义和调整模型、编译模型、训练模型以及评估其性能。下面是一个详细的Python代码示例,用于实现上述过程。我们将使用Keras和TensorFlow来构建这个分类系统。
首先,请确保你已经安装了必要的库:
pip install tensorflow
1. 加载数据
假设同学你的数据集已经按照类别组织,并且分为训练集和验证集目录结构如下:
/path/to/dataset/
train/
正常/
秆锈病/
白粉病/
...
validation/
正常/
秆锈病/
白粉病/
...
我们可以使用ImageDataGenerator
来加载和预处理图像。
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=0.2,
height_shift_range=0.2, shear_range=0.2, zoom_range=0.2,
horizontal_flip=True, fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/path/to/dataset/train',
target_size=(224, 224),
batch_size=32,
class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
'/path/to/dataset/validation',
target_size=(224, 224),
batch_size=32,
class_mode='categorical'
)
2. 定义和调整模型
使用预训练的ResNet50模型作为基础,并在其顶部添加新的全连接层以适应我们的分类任务。
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Dropout
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax')) # 7个类别
# 锁定卷积基防止重新训练
for layer in base_model.layers:
layer.trainable = False
3. 编译模型
接下来,我们需要编译模型,指定损失函数、优化器和评价指标。
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
4. 训练模型
现在,开始训练模型。
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size,
epochs=25
)
5. 模型评估
在训练完成后,可以使用验证集来评估模型的性能。
loss, accuracy = model.evaluate(validation_generator)
print("Validation Loss:", loss)
print("Validation Accuracy:", accuracy)
使用ResNet50训练一个7类农业病害小麦图像分类器的完整流程。请根据自己的实际路径修改数据集位置,并根据需要调整参数,比如批次大小、训练轮数等,代码示例,仅供参考。