如何使用yolov8模型训练无人机海上目标检测数据集 通过训练的无人机航拍海面目标检测数据集模型,建立深度学习无人机海上人员船只的检测系统

如何使用yolov8模型训练无人机海上目标检测数据集 通过训练的无人机航拍海面目标检测数据集模型,建立深度学习无人机海上人员船只的检测系统

以下为代码示例,仅供参考学习。
在这里插入图片描述


以下文字及代码仅供参考学习。
无人机海上目标检测数据集,无人机航拍海面数据集 在这里插入图片描述

使用yolo训练
yolo格式
训练集:8930张
验证集:1547张
测试集:3750张
类别:[‘ignore’, ‘swimmer’, ‘boat’, ‘jetski’, ‘life_saving_appliances’, ‘buoy’]
在这里插入图片描述

基于 SeaDroneSee v2 航拍海上目标检测数据集(YOLO 格式)的完整训练与部署指南,涵盖从数据准备、环境搭建、模型训练、推理到性能评估的全流程。可适用于 YOLOv5 / YOLOv8。

在这里插入图片描述


🌊 一、数据集介绍

  • 数据格式:YOLO TXT + JPG 图像
  • 类别数量:6类
    ['ignore', 'swimmer', 'boat', 'jetski', 'life_saving_appliances', 'buoy']
    
  • 划分情况
    • 训练集:8930 张
    • 验证集:1547 张
    • 测试集:3750 张
  • 总图像数:14227 张

📁 二、目录结构要求(YOLO 可兼容)

SeaDroneSee_v2/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
└── data.yaml

🧾 三、创建 data.yaml 文件

train: ./images/train
val: ./images/val
test: ./images/test

nc: 6  # 类别数量
names: ['ignore', 'swimmer', 'boat', 'jetski', 'life_saving_appliances', 'buoy']

在这里插入图片描述

🔧 四、环境搭建(YOLOv8)

1. 安装依赖

# 创建虚拟环境(可选)
python -m venv yolo_env
source yolo_env/bin/activate  # Windows: yolo_env\Scripts\activate

# 安装 ultralytics 和 OpenCV
pip install ultralytics opencv-python-headless

📦 五、模型选择与训练

推荐使用 YOLOv8 模型系列:Yolov8系列模型差异比较

模型特点
yolov8n.pt小模型,适合边缘设备
yolov8s.pt中等大小,精度和速度平衡
yolov8m.pt精度更高,适合 GPU
yolov8l.pt / yolov8x.pt更大模型,精度最高

开始训练

yolo task=detect mode=train model=yolov8s.pt data=data.yaml epochs=100 imgsz=640 batch=16 workers=4

参数说明:

  • model: 使用预训练模型(如 yolov8s.pt
  • data: 数据配置文件路径
  • epochs: 总训练轮次
  • imgsz: 输入图像尺寸(推荐640或1280)
  • batch: 批量大小(根据GPU内存调整)
  • workers: 数据加载线程数

📊 六、性能评估(验证集)

yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml

输出指标包括:

  • mAP@0.5
  • mAP@0.5:0.95
  • Precision, Recall
  • FPS(帧率)

🎥 七、模型推理与部署

1. 单图推理

from ultralytics import YOLO

model = YOLO('runs/detect/train/weights/best.pt')
results = model('path/to/image.jpg')

for r in results:
    im_array = r.plot()
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()

2. 视频流实时检测(无人机航拍)

import cv2

def detect_video(video_path):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        results = model(frame)
        annotated_frame = results[0].plot()
        cv2.imshow("Marine Object Detection", annotated_frame)
        if cv2.waitKey(1) == ord("q"):
            break
    cap.release()
    cv2.destroyAllWindows()

detect_video(0)  # 0 表示摄像头;也可以传入视频路径

3. 批量预测整个文件夹

yolo task=detect mode=predict model=best.pt source="path/to/images" save=True

🚀 八、模型导出为 ONNX / TensorRT / OpenVINO

导出为 ONNX 格式

yolo export model=best.pt format=onnx

导出为 TensorRT(需 NVIDIA Jetson)

yolo export model=best.pt format=engine device=0  # device=0 表示使用GPU

导出为 OpenVINO(用于 Intel 设备)

yolo export model=best.pt format=openvino

📁 九、测试集批量评估(自定义脚本)

如果你想对测试集进行批量评估并统计结果:

import os
from ultralytics import YOLO

model = YOLO('best.pt')
test_dir = './images/test'
label_dir = './labels/test'

results = []
for img_file in os.listdir(test_dir):
    if img_file.endswith('.jpg'):
        img_path = os.path.join(test_dir, img_file)
        result = model(img_path)[0]
        results.append(result)

# 可视化部分结果
for res in results[:5]:
    res.show()

🧱 十、Docker 部署建议

Dockerfile 示例

FROM python:3.10
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
CMD ["python", "inference.py"]

构建镜像

docker build -t sea_drone_yolo .

运行容器

docker run -it --rm -v $(pwd)/data:/app/data sea_drone_yolo

以上文字及代码仅供参考学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值