如何训练使用DeepPCB数据集(1500张)六种缺陷类型:并实现可视化及评估 YOLOv5算法实现对PCB板上的缺陷进行检测

在这里插入图片描述
DeepPCB数据集(1500张)
可用于yolov5,v8等模型训练在这里插入图片描述

提供YOLOv5算法实现对PCB板上的缺陷进行检测识别代码。

标注了六种缺陷类型:open、short、mousebite、spur、pin-hole、spur。在这里插入图片描述
在这里插入图片描述

YOLOv5 PCB缺陷检测

import os
import glob
import yaml
from pathlib import Path
import torch
from IPython.display import Image, clear_output
from ultralytics.yolo.v5 import train

# 设置随机种子以保证可重复性
torch.manual_seed(42)

# 定义数据集路径
dataset_dir = 'path/to/dataset'

# 创建YOLOv5的数据集配置文件
data_config = {
    'train': os.path.join(dataset_dir, 'train/images'),
    'val': os.path.join(dataset_dir, 'val/images'),
    'test': os.path.join(dataset_dir, 'test/images'),
    'nc': 5,  # 类别数量
    'names': ['open', 'short', 'mousebite', 'spur', 'pin-hole']  # 类别名称
}

with open(os.path.join(dataset_dir, 'data.yaml'), 'w') as f:
    yaml.dump(data_config, f)

# 打印数据配置信息
print("Data Configuration:")
print(data_config)

# 训练模型
results = train.run(
    data=os.path.join(dataset_dir, 'data.yaml'),
    imgsz=640,
    batch=16,
    epochs=100,
    weights='yolov5s.pt',
    name='pcb_defect_detection',
    project='runs/train'
)

# 评估模型
# YOLOv5的评估通常在训练过程中自动完成,但可以手动运行
# results = val.run(weights='runs/train/pcb_defect_detection/weights/best.pt', data=data_config)

# 可视化预测结果
source_image = '../path/to/dataset/val/sample.jpg'  # 替换为你要测试的图片路径
results = detect.run(
    source=source_image,
    weights='runs/train/pcb_defect_detection/weights/best.pt',
    conf_thres=0.25,
    iou_thres=0.45,
    save=True,
    save_txt=True
)

# 显示预测结果
Image(filename='runs/detect/exp/sample.jpg')



假设
你有一个DeepPCB数据集,包含1500张图像,并且标注了六种缺陷类型:`open``short``mousebite``spur``pin-hole``spur`(注意:这里有两个 `spur` 类别,可能是重复的,假设只保留一个)。数据集可以直接用于YOLOv5和YOLOv8等模型训练。

### 项目介绍

#### 数据准备
- **数据集**: 包含1500张图像。
- **类别**:
  - `open`: 开路
  - `short`: 短路
  - `mousebite`: 鼠咬痕
  - `spur`: 刺点
  - `pin-hole`: 孔洞
- **标注格式**: YOLO TXT格式。
- **数据分布**:
  - 假设数据集已经按照一定的比例划分好了训练集、验证集和测试集。

#### 模型选择
- **YOLOv5**: 使用YOLOv5进行目标检测。YOLOv5是YOLO系列的一个流行版本,具有较高的性能和良好的精度。

#### 功能
- **数据加载**: 自动从指定目录加载图像和标注文件。
- **模型训练**: 使用YOLOv5进行训练。
- **模型评估**: 在验证集上评估模型性能。
- **结果保存**: 保存训练日志和最佳模型权重。
- **可视化预测结果**: 可视化预测结果以进行验证。

### 代码实现

首先,确保你已经安装了YOLOv5库和其他必要的依赖项。你可以通过以下命令安装YOLOv5:

```bash
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

接下来,我们编写代码来组织数据集并训练YOLOv5模型。假设数据集已经是标准的YOLO格式,并且按照给定的比例划分好了训练集、验证集和测试集。

如何使用这些代码

  1. 准备数据

    • 确保你的数据集格式正确,包含训练集、验证集和测试集文件夹,以及对应的标注文件。
    • 示例数据结构如下:
      path/to/dataset/
      ├── train/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      ├── val/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      ├── test/
      │   ├── images/
      │   │   ├── image1.jpg
      │   │   ├── image2.jpg
      │   │   └── ...
      │   ├── labels/
      │   │   ├── image1.txt
      │   │   ├── image2.txt
      │   │   └── ...
      ├── data.yaml
      
  2. 替换数据路径

    • 在代码中,将 'path/to/dataset' 替换为你的数据集路径。
    dataset_dir = 'your_dataset_directory'
    
  3. 运行代码

    • 将上述代码复制到你的Python脚本中,并运行该脚本。
    • 确保你已经安装了所需的库:
      git clone https://github.com/ultralytics/yolov5
      cd yolov5
      pip install -r requirements.txt
      

示例:使用自定义数据集

假设你有一个新的数据集 my_deep_pcb_dataset,其内容如下:

my_deep_pcb_dataset/
├── train/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
├── val/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
├── test/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── labels/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
├── data.yaml

你可以按照以下步骤进行替换:

  1. 修改数据路径

    dataset_dir = 'my_deep_pcb_dataset'
    
  2. 运行完整的代码

    • 将所有代码整合到一个Python脚本中,并运行该脚本。

注释说明

代码中包含了详细的注释,帮助你理解每个部分的功能。以下是关键部分的注释:

  • 数据准备

    • data_config: 定义训练集、验证集和测试集的路径,以及类别信息。
  • 模型训练

    • train.run: 使用YOLOv5进行训练。
  • 模型评估

    • YOLOv5的评估通常在训练过程中自动完成,但可以手动运行 val.run 进行评估。
  • 可视化预测结果

    • detect.run: 进行推理并显示预测结果。

结果

运行代码后,你将得到以下结果:

  1. 控制台输出

    • 训练过程中每个epoch的日志信息。
    • 验证集上的评价指标(如mAP)。
  2. 文件输出

    • runs/train/pcb_defect_detection/weights/best.pt: 最佳模型权重。
    • runs/val/exp/results.txt: 验证结果。
  3. 图像输出

    • runs/detect/exp/sample.jpg: 带有预测边界的图像。

希望这些详细的信息和代码能够帮助你顺利实施和优化你的项目

运行步骤总结

  1. 克隆YOLOv5仓库

    git clone https://github.com/ultralytics/yolov5
    cd yolov5
    
  2. 安装依赖项

    pip install -r requirements.txt
    
  3. 准备数据集

    • 确保数据集路径正确,并且包含训练集、验证集和测试集文件夹,以及对应的标注文件。
  4. 运行训练脚本

    python your_script_name.py
    
  5. 评估模型

    • 评估结果会在训练结束后自动输出在控制台和文件中。
  6. 可视化预测结果

    • 测试图像的结果会保存在 runs/detect/exp/ 文件夹中,可以直接查看带有预测边界的图像。

希望这些详细的指导和代码示例能帮助你成功实现和优化你的PCB缺陷检测项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值