2025深度学习发论文&模型涨点之——频域+MLP
近年来,频域分析方法(Fourier变换、小波变换、频域注意力机制等)在深度学习中的应用日益广泛,为传统空间域模型提供了新的优化视角。频域变换能够有效捕捉信号的全局频率特征,增强模型对长期依赖、噪声鲁棒性及多尺度模式的学习能力。与此同时,多层感知机(MLP)凭借其结构简洁、参数高效和并行计算优势,在视觉、时序预测等领域展现出强大的竞争力。
然而,传统MLP架构在空间域中直接建模长程依赖关系仍面临计算复杂度高、局部偏差累积等挑战。为此,研究者们探索将频域分析与MLP相结合,利用频域的低秩性和能量集中特性,优化特征表示并提升计算效率。例如,通过快速傅里叶变换(FFT)替代部分矩阵乘法,或在频域设计轻量级滤波机制,显著降低了模型的计算开销。此外,频域MLP(FMLP)架构通过频域稀疏化、频带注意力等策略,进一步增强了模型对关键频率成分的聚焦能力,在长序列建模、高分辨率图像处理等任务中表现优异。
我整理了一些频域+MLP【论文+代码】合集,需要的同学公人人人号【AI创新工场】发525自取。
论文精选
论文1:
Improved Implicit Neural Representation with Fourier Reparameterized Training
基于傅里叶重参数化训练的改进型隐式神经表示
方法
傅里叶重参数化方法:提出了一种基于傅里叶重参数化的训练方法,通过学习固定傅里叶基的系数矩阵来组成多层感知机(MLP)的权重,而不是直接从训练数据中学习权重。
理论分析:通过理论分析,证明了权重重参数化可以缓解MLP的低频偏差问题,从而提高隐式神经表示(INR)的准确性。
实验验证:在不同的INR任务中评估了所提出的傅里叶重参数化方法,包括简单的MLP、带有位置编码的MLP和带有高级激活函数的MLP等架构。
神经切线核(NTK)分析:利用NTK理论分析了傅里叶重参数化方法对训练动态的影响,证明了该方法能够使NTK矩阵的特征值分布更加平衡,从而缓解低频偏差。
创新点
缓解低频偏差:通过傅里叶重参数化,显著缓解了MLP的低频偏差问题,使得网络能够更好地学习高频成分,从而提高了隐式神经表示的准确性。例如,在2D图像逼近任务中,使用傅里叶重参数化方法的MLP在Kodak 24数据集上的平均PSNR值从21.33提升到了22.44。
提升训练效率:傅里叶重参数化方法不仅提高了表示的准确性,还加快了网络的收敛速度。在简单的1D函数逼近任务中,该方法显著提高了收敛速度,同时降低了训练误差。
适用性广泛:该方法可以应用于多种MLP架构,包括带有位置编码和高级激活函数的MLP,且不需要修改网络结构,具有广泛的适用性。
理论支持:首次将重参数化技术与网络训练偏差联系起来,从理论上证明了通过适当的重参数化可以缓解频率偏差,为未来研究提供了新的视角。
论文2:
FAN: Fourier Analysis Networks
傅里叶分析网络(FAN)
方法
傅里叶分析网络(FAN):提出了一种基于傅里叶分析的新型通用神经网络FAN,通过将傅里叶原理融入网络结构和计算过程,使其能够有效处理周期性现象。
周期性建模:FAN通过引入傅里叶级数,使网络能够建模周期模式并进行外推,从而从数据中学习一般原则。
网络设计:FAN遵循两个核心原则:一是确保其周期建模能力随网络深度增加而增强;二是保证网络的每一层都能用于周期建模。
实验验证:通过在周期性建模任务和多个真实世界任务(如符号公式表示、时间序列预测、语言建模和图像识别)中的实验,验证了FAN的优越性。
创新点
周期性建模能力:FAN在周期性建模任务中表现出色,特别是在训练数据域外的泛化能力上,显著优于现有的通用神经网络,如MLP、KAN和Transformer。
参数效率:FAN在保持通用建模能力的同时,比MLP减少了参数数量和计算量(FLOPs)。例如,在语言建模任务中,使用FAN的Transformer模型在参数数量上减少了约14.16M,同时在IMDB数据集上的Loss降低了7.51%,Accuracy提高了5.78%。
适用性广泛:FAN不仅在周期性任务中表现出色,还在非周期性任务(如语言建模和图像识别)中取得了优异的性能,具有广泛的适用性。
可扩展性:在大规模语言模型(LLM)中,FAN展现出更好的可扩展性,仅需69.2%的参数即可达到与标准Transformer相当的性能。
论文3:
Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
频域MLP在时间序列预测中是更有效的学习者
方法
频域MLP(FreMLP):提出了一种基于频域的MLP架构,通过将时间序列信号转换到频域进行学习,然后将学习结果转换回时域。
全局视图和能量压缩:频域MLP能够提供全局视图,更容易学习全局依赖关系,并且能够集中在关键的频率成分上,从而过滤噪声。
FreTS架构:FreTS架构包括两个阶段:域转换(将时间序列信号转换为频域)和频域学习(在频域中学习频率成分的实部和虚部)。
实验验证:在13个真实世界的时间序列基准数据集上进行了广泛的实验,验证了FreTS在短期和长期预测任务中的优越性。
创新点
全局视图和能量压缩:频域MLP能够捕捉更明显的全局周期模式,并且在学习权重时能够识别更清晰的对角依赖关系,从而提高预测性能。例如,在交通数据集上,频域MLP学习到的权重比时域MLP更清晰。
性能提升:FreTS在多个时间序列预测任务中取得了显著的性能提升。在短期预测任务中,FreTS在MAE和RMSE指标上平均分别提高了9.4%和11.6%。在长期预测任务中,FreTS在MAE和RMSE指标上平均分别降低了20%以上。
计算效率:FreTS的复杂度为O(N log N + L log L),在参数数量和训练时间上显著优于现有的基于GNN和Transformer的方法。例如,在Wiki数据集上,FreTS的参数数量比AGCRN减少了30%,训练时间减少了20%。
适用性广泛:FreTS不仅在时间序列预测任务中表现出色,还可以应用于其他需要全局视图和能量压缩的领域。