最近TPAMI 2024上很火的FreqFusion大家有关注吗?看了下这是种新的频率感知特征融合方法,涨点超级猛,直接覆盖语义分割、目标检测、实例分割和全景分割!
FreqFusion用到了频域+特征融合技术,这种技术的优势就在于能捕捉到传统时域分析难以揭示的频率特性,显著提升数据处理的准确性和效率,帮助我们构建出更加复杂和精细的模型,是信号处理、图像识别等任务新的、更加高效的解决思路和手段。
所以频域+特征融合也是目前深度学习领域一个重要技术,创新性高且研究价值深远,在顶会(比如CVPR、AAAI)上的成果也很多,想发顶会顶刊的同学可以考虑。
我这边整理了12篇频域+特征融合最新论文(顶会顶刊有),基本都有代码方便大家复现,需要参考的同学可以直接无偿获取~
全部论文+开源代码需要的同学看文末
Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion
方法:论文提出了一种基于Fourier增强的隐式神经融合网络(FeINFN),结合了频域和特征融合技术,用于多光谱和高光谱图像融合任务。作者还引入了空间-频率隐式融合函数,以及使用复杂Gabor小波激活函数的空间-频率交互解码器,以促进空间和频率域特征的融合。