频域与注意力机制的结合是一种创新的网络设计方法,它利用频域分析来增强特征提取过程,并通过注意力机制进一步优化特征的利用效率。
这种策略有助于模型捕捉和利用信号中的关键频率成分,不仅能够提高模型的性能和精度,还能在一定程度上简化模型的设计和优化过程。
以浙大团队的FcaNet为例:
FcaNet是一种非常巧妙的通道注意力机制,从频域的角度出发,采用DCT对SE进行了扩展。这种方法简洁而高效,仅需对原有代码进行微小的改动,即能实现相较于SENet50模型1.8%的性能提升。
因此,频域与Attention的结合也是深度学习中的一个热门方向,并且由于我们以往对频域的关注较少,可挖掘的创新点很多。
本文分享频域+注意力机制9种融合创新方案,有最新的也有经典的,主要涉及自适应频域特征提取+attention、多尺度频域+attention等,方便各位获取灵感。
论文以及开源代码需要的同学看文末
SpectFormer
SpectFormer: Frequency and Attention is what you need in a Vision Transformer
方法:之前,transformer要么使用全注意力层,要么使用谱层。Spectformer结合了这两个方面,并且表现出比全注意力层或全谱层更好的性能。作者在特定任务中提出了参数化方法,为进一步的适应性提供了可能性。