3大核心技术,免费开源的智能合同审查分析软件的技术介绍

思通数科 思通数据 

本智能合同审查分析系统致力于解决法律领域中复杂文档与信息处理的难题,采用最先进的深度学习与自然语言处理(NLP)技术,提供精准的实体识别与关系抽取功能。系统基于BERT、GPT等主流模型,实现自动识别和关联法律文档中的当事人、案件要素、时间线等复杂关系。借助高效的关系抽取算法,用户能够快速获取信息的关联脉络,从而提升文档处理和分析效率。

1b59f16a42db1711b8cac2707ecc1bdf.jpeg

一、技术亮点与核心算法

1.深度学习模型
系统采用BERT、GPT等预训练模型,通过对海量法律文档进行语义理解,实现了法律术语、特定语境的准确识别和抽取。模型经过定制优化,特别适用于法律文书的语言结构和逻辑复杂性。

73dc9884947015282f3bc82c5c37b4cf.jpeg

2.关系抽取技术
系统内置关系抽取算法,能够自动识别文档中不同实体之间的关系,并建立多层级关联。通过构建知识图谱,实现文档内容的穿透式分析和深度关联,为法律专业人员提供全景式信息视图。

043a932f38264f35e46e868d97322859.jpeg

3.多层次数据处理能力
在大规模数据处理环境下,系统具备较强的并发处理能力。支持多文档关联分析、版本管理、历史溯源等功能,确保在复杂案件管理中的全面性和高效性。

二、客户案例  

1. 客户背景:北京某知名律所

该律所处理大量合同审查与修订工作。系统的深度学习模型能精准识别条款,关系抽取准确率达到90%以上,使其合同审核效率提升了50%。客户反馈称,系统有效减少了手工比对时间,大幅降低了风险。  

2. 客户背景:华东一家中型法务咨询公司

公司面临客户反馈的多版本文档管理困境。通过使用本系统的多版本管理功能,公司高效处理文档差异、优化客户输出。并发时准确率保持99%以上。客户表示满意度显著提升。

ee052bb593f4807fd9802cc04ea7e5fb.jpeg  

3. 客户背景:全国某大律师事务所

专注于民事诉讼业务,该事务所采用系统处理诉讼文书,识别复杂案件主体并完成跨文档关联。每年节省超过500小时的工时,合规性大幅提高。  

e844f490a237818befc34fcf4eca84c9.jpeg

三、技术架构与兼容性  

本系统支持开放API,方便与主流企业系统(如ERP、CRM)集成,并兼容各种语言与协议。支持企业进行二次开发与模块扩展,确保灵活性满足业务需求。  

149a3843a6d8debc1145e88016dd7ac4.jpeg



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值