# **论文标题**
**基于动态通道剪枝的实时语义分割模型优化**
*Real-Time Semantic Segmentation Optimization via Dynamic Channel Pruning*
---
## **摘要(Abstract)**
**模板**:
> 实时语义分割在边缘计算场景下面临模型精度与推理速度的权衡难题。本文提出一种动态通道剪枝方法,通过输入自适应的通道重要性评估机制,在减少冗余计算的同时保留关键区域的分割精度。具体地,设计轻量级动态阈值生成网络(DTN)预测各卷积层剪枝比例,结合可微分Gumbel-Softmax松弛实现端到端训练。在Cityscapes和ADE20K数据集上的实验表明,该方法在Jetson Nano嵌入式平台上的推理速度达到24.3 FPS,较原始DeepLabv3+提升3倍,mIoU仅下降1.7%。代码与模型已开源:https://github.com/xxx.
**关键词**:语义分割、动态剪枝、实时推理、边缘计算、模型压缩
---
## **1. 引言(Introduction)**
**写作要点**:
1. **研究背景**:
- 语义分割在自动驾驶、AR/VR等领域的核心作用。
- 现有模型(如DeepLab系列)的高计算成本与实时性需求的矛盾。
- 传统静态剪枝方法的不足:无法根据输入动态调整计算量。
2. **问题定义**:
- **核心挑战**:如何实现输入自适应的计算资源分配?
- **关键假设**:不同图像的计算冗余