数据透视表(三)

行汇总百分比与降序排列

双击鼠标点击单元格进行值字段设置
在值显示中更改为占父行汇总的百分比/选择降序排列

在这里插入图片描述

行汇总百分比与降序排列

筛选的应用

鼠标选中行标签-标签筛选(针对行标签当中的内容进行筛选)
鼠标选中行标签-值筛选(大于、小于、等于)

在这里插入图片描述

值筛选

排序的应用与自定义排序

单击鼠标右键-点排序下的升序或降序
打开筛选项-选中对应的数据源-点击文件选项卡下的选项-在弹出的对话框中找到高级-上下拖拽到最底部-自定义序列-导入

批量生成透视子表

1、把数据放入报表筛选的字段

数据透视表工具选项中选择显示报表筛选页-选中区域按中shift 工作表变为组的状态(实现对每一个透视表相同的设置)

2、根据自定义的功能名称批量生成透视的子表

选中数据源区域-Ctrl +N 新建一个新的工作簿-Ctrl +V粘贴-点击插入选择数据透视表将透视表放入空白区域-点击显示报表筛选页的功能

在这里插入图片描述

批量生成透视子表

认识切片器

定义:是某个数据切面,对数据不同的效果呈现
可以使用数据透视表完成多表的链接
选中透视表点击分析选项卡下的插入切片器
选择字段类型的切片来源
可以更改切片器的样式

在这里插入图片描述

切片器

如何链接切片器与报表

点击插入日程表
在数据源中的日期类型的字段进行一个日程表的设置
点击勾选交易日期插入日程表
选项选项卡下可以设置切片器的高度宽度

数据透视表布局

点击任意一个有字单元格
点击插入选项卡下的数据透视表新建一张新的数据表源
点击报表布局下的重复所有标签项可以将所有的标签内容有效重复
可以在标签中取消它的二级分类汇总
点击总计中的选择对行和列经用就可以将数据表中总计行清除
点击分析选项卡下的加减按钮可以隐藏或展示
点击展开字段形成一个完整的数据源表

数据透视表打印

Ctrl +D打开打印预览的对话框设置打印的效果
分月打印:鼠标选中交易日期-单击鼠标右键打开字段设置-点击布局和打印勾选每项后面插入分页符

在这里插入图片描述

Python 数据透视表是一种数据分析工具,主要用于对数据集进行汇总、排序和分析,以便更容易地理解数据之间的关联。在处理大型数据集时,数据透视表能够有效地简化数据,并提供清晰的见解。 ### Python 中的数据透视表 在 Python 中,通常通过 pandas 库来创建和操作数据透视表。pandas 是一个强大的数据处理库,它提供了 DataFrame 对象以及多种方法来进行数据的透视处理。 #### 创建数据透视表的基本步骤: 1. **导入 pandas**:首先需要导入 pandas 库。 ```python import pandas as pd ``` 2. **加载数据**:读取数据文件(如 CSV 文件)到 pandas DataFrame 中。 ```python df = pd.read_csv('your_data.csv') ``` 3. **创建数据透视表**:使用 `pivot_table` 函数构建数据透视表。这个函数需要指定列名、行标签、值等参数。 ```python pivot_table = df.pivot_table(values='sales', index=['category', 'brand'], aggfunc='sum') ``` 在这个例子中,我们假设有一个名为 'sales' 的数值列,以及 'category' 和 'brand' 作为行标签;我们将计算每个类别和品牌下的总销售量。 ### 层总计 层总计意味着数据透视表不仅仅基于两层维度进行分组统计,而是扩展到了层甚至更多层次。例如,在上面的例子基础上,如果还有第层维度(比如时间),我们需要在创建数据透视表时添加额外的参数: ```python # 添加时间维度并设置为总计 pivot_table = df.pivot_table(values='sales', index=['category', 'brand'], columns=['time_period'], aggfunc='sum') ``` 这里的时间维度 `time_period` 需要在原始数据集中定义,并且在创建数据透视表时指定作为列标签。这样,你可以得到每个类别和品牌的销售额按照不同时间周期的总计结果。 ### 相关问题: 1. **如何调整数据透视表的排序顺序?** 可以通过添加 `sort_index=True` 或者 `sort_values=True` 参数来调整排序顺序。 2. **如何处理缺失值在数据透视表中的显示?** 使用 `fill_value` 参数可以替换缺失值,或者使用 `dropna=False` 来包含空值的行或列。 3. **数据透视表能否用于实时更新数据?** 虽然基本的 pandas 数据透视表是静态的,但如果结合其他技术如 Flask 等 Web 框架,可以实现实时数据库查询和动态生成数据透视表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值