图像识别技术与应用

1.Pytorch实现cifar10多分类

以CIFAR-10作为数据集,使用PyTorch利用卷积神经网络进行分类。

2.数据集说明

CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。

 此过程经过卷积层池化层卷积层池化层最后在经过2个全连接。

数据集分为5个训练批次和1个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序选取剩余图像,但一些训练批次可能更多会选取来自一个类别的图像。总体来说,五个训练集之和包含来自每个类的正好5000张图像。图6-27显示了数据集中涉及的10个类,以及来自每个类的10个随机图像。 

以下是使用PyTorch实现CIFAR-10多分类任务的示例代码,CIFAR-10数据集包含10个不同类别的图像,如飞机、汽车、鸟类等。

 #导入数据包

 

 # 数据预处理

 

 #加载训练集和测试集并创建数据加载器

 
 # 定义卷积神经网络模型、初始化模型、损失函数和优化器

 

# 训练模型

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值