1.Pytorch实现cifar10多分类
以CIFAR-10作为数据集,使用PyTorch利用卷积神经网络进行分类。
2.数据集说明
CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。
此过程经过卷积层池化层卷积层池化层最后在经过2个全连接。
数据集分为5个训练批次和1个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序选取剩余图像,但一些训练批次可能更多会选取来自一个类别的图像。总体来说,五个训练集之和包含来自每个类的正好5000张图像。图6-27显示了数据集中涉及的10个类,以及来自每个类的10个随机图像。
以下是使用PyTorch实现CIFAR-10多分类任务的示例代码,CIFAR-10数据集包含10个不同类别的图像,如飞机、汽车、鸟类等。
#导入数据包
# 数据预处理
#加载训练集和测试集并创建数据加载器
# 定义卷积神经网络模型、初始化模型、损失函数和优化器
# 训练模型