【实用教程】小白都能看懂的autodock分子对接及可视化

可有可无的摘要

还在为导师布置的刁钻任务发愁?

还在为自己的蛋白质找不到对象(配体)焦虑?

还在为...好吧编不下去了

本文旨在帮助大多数在搜索引擎中苦寻分子对接教程,却因难度过高被劝退的科研小白(是的,就是你),本教程简洁无废话(废话)。全程截图干货,跟着本教程一步步操作,保证你做出好看的分子对接图片,给你导师一份满意的答卷,做不出来你打我!

以下是目录:

目录

可有可无的摘要

软件安装

配置工作目录

文件准备

pubchem数据库下载小分子结构SDF文件

PDB数据库下载蛋白质结构

蛋白质文件前处理

小分子文件前处理

进行autogrid

导入配体和受体文件

设置gridbox

运行autogrid

进行autodock

设置计算参数

运行autodock

导出对接结果

可视化

结果演示

参考链接


话不多说直接进入教程

软件安装

#autodock安装

Download AutoDock4 – AutoDock

#MGLTools安装(安装前需要创建文件夹)

Downloads – mgltools

#Anaconda安装(安装前需要创建文件夹)

Download Anaconda Distribution | Anaconda

​
#pymol开源版安装

#需要在anaconda命令行中安装
conda install conda-forge::pymol-open-source

#openbabel的安装
conda install openbabel -c conda-forge

​

配置工作目录

#将Autodock4.2.6安装目录下的autodock4.exe、autogrid4.exe以及mgltools安装目录下的adt.bat复制到一个新的目录下,新目录命名为Autodock(这里我的工作目录为D:\00workdata\Autodock)(工作目录路径中不要有英文

#打开autodocktools,设置工作目录路径

文件准备

pubchem数据库下载小分子结构SDF文件

PubChem

PDB数据库下载蛋白质结构

#在PDB网站找到所需的蛋白编号(例如酯酶D为3FCX)

RCSB PDB: Homepage

#打开pymol,输入fetch 3FCX,按回车自动下载蛋白3D结构。

#去除水分子,如下图所示,点蛋白编号前面的A,选择去除水分子。点击左上角File-Export Molecule,导出生成PDB文件。命名为ESD.pdb

蛋白质文件前处理

#蛋白质结构加氢

#autodocktools打开蛋白质pdb文件,点击Edit-Hydrogens-Add

#将蛋白质选为受体

#点击Grid-Macromolecule-Choose,点击蛋白质名称,点击蛋白质名称,点击Select Molecule,根据提示操作保存为ESD.pdbqt

小分子文件前处理

#pymol打开小分子sdf文件,导出为pdb格式

#小分子文件加氢

#autodocktools打开小分子pdb文件,点击Edit-Hydrogens-Add

#选择小分子为配体

#点击Ligand-Input-Choose,点击小分子名称,点击Select Molecule for Autodock4,点击Ligand-Output-Save as PDBQT,保存为pdbqt文件

进行autogrid

导入配体和受体文件

#点击Grid-Macromolecule-Open,选择蛋白质pdbqt文件

#点击Grid-Set Map Types-Open Ligand,选择小分子pdbqt文件

设置gridbox

#点击Grid-Grid box,调节gridbox大小,使得其完全覆盖蛋白质分子,但不包含小分子

#如果确实无法做到不包含小分子结构,点击DejaVu GUI,取消勾选小分子文件的“mouse tranforms apply to "root" object only"选项,将小分子用鼠标右键拖拽出gridbox,再重新勾选该选项即可

#调试好gridbox后,选择File-Close saving current即可

#导出为GPF

#点击Grid-Output-Save GPF,注意这里保存文件需要手动命名,带.gpf后缀,这里命名为grid.gpf

运行autogrid

#点击Run-Run Autogrid,注意工作目录是否正确,导入刚才保存的grid.gpf文件,点击Launch,即开始运行Autogrid,约5min

#运行结束后可以看见工作目录下多了很多map文件

进行autodock

设置计算参数

#点击Docking-Macromolecule-Set Rigid Filename, 选中蛋白质的pdbqt文件

#点击Docking-Ligand-Choose,选中小分子,点击Select Ligand

#接下来的Search Parameters-Geneitc Algorithm和Docking Parameters,点击Accept选择默认参数即可

#导出设置

#点击Docking-Output-Lamarckian GA,导出为dock.dpf(此文件同样需要手动命名,如上)

运行autodock

#点击Run-Run AutoDock,同样检查工作目录是否正确,上传刚才保存的dock.dpf,点击Launch,运行autodock,约10min

#对接完成后,查看对接结果

#删去所有分子,点击Edit-Delete-Delete All Molecules

#点击Analyze-Dockings-Open,打开后缀为.dlg的结果文件

#点击Analyze-Macromolecule-Open打开分子结构

#点击Analyze-Conformations-Play ranked bu enegy,可按照结合自由能从最小到最大顺序观看结合状态(默认模拟对接10次)

#另外,直接用记事本打开.dlg文件也可以直接看到所有对接结果的结合自由能

导出对接结果

#点击Set Play Options-Whie Complex导出选中的对接状态为pdbqt文件,这里我导出为ESD-Dolutegravir.pdbqt

可视化

#pymol不能直接打开pdbqt文件,所以要先将其转化为pdb文件

#在Anaconda Prompt打开openbabel,输入obabel -H打开帮助页面

#可以看到,openbabel命令格式为obabel[-i<input-type>] <infilename> [-o<output-type>] -O<outfilename> [Options]

#将命令中的文件和路径替换为我们的文件和路径即可

#因此,输入obabel -ipdbqt D:\00workdata\Autodock\ESD-Dolutegravir.pdbqt -opdb -O D:\00workdata\Autodock\ESD-Dolutegravir.pdb

#接下来打开pymol操作

#在pymol中打开刚才得到的pdb文件,点击右下角S打开序列,选中小分子序列,命名为ligand。

#同样选中蛋白质序列,先将右下角Selecing选为Chains,然后才能悬着呢全部蛋白质序列(如果是多聚体蛋白,按住shift以连续选中多条链),命名为protein

#点击蛋白和小分子后的C按钮可以修改颜色

#选中小分子,按以下顺序点击以显示结合位点的氢键

#选中蛋白,点击show-sticks显示氨基酸棍状结构,右下角Selecting修改为Residues模式,选中与小分子连接的氨基酸残基,命名为A,并更改颜色

#点击蛋白,点击H-sicks隐藏蛋白棍状结构,然后显示小分子结合位点氨基酸残基棍状结构

#此时展示分子对接的基本要素已经形成,后续可根据需要修改背景颜色、显示氨基酸残基名字以及氢键键能等等,这里不再赘述

#修改好后就可以导出了,点击右上角Draw,选择合适的格式导出即可

结果演示

参考链接

https://www.bilibili.com/video/BV1Yr4y1T7Ko

https://www.bilibili.com/video/BV1M94y1k7aL

Autodock分子对接是一种计算方法,用于预测药物与蛋白质结合的方式和强度。在药物研发过程中,了解药物与靶点蛋白的结合方式对于药物设计和优化至关重要。 在Autodock分子对接中,首先需要准备药物和蛋白质的结构信息。药物的结构可以通过化学合成或者从数据库中获取到,而蛋白质结构可以通过实验技术例如X射线晶体学或者核磁共振得到。然后,通过计算方法将药物和蛋白质的结构信息转化为数学模型,在计算机中进行模拟。 在分子对接的计算过程中,药物和蛋白质的结构信息被转化为分子力场和描述分子间相互作用的能量函数。分子力场模型可以评估药物与蛋白质之间的相互作用力,而能量函数则可以评估药物在不同的结合位点上的结合能力。通过优化药物分子在蛋白质表面的位置和方向,可以预测药物分子与蛋白质的最佳结合位点和结合模式。 Autodock分子对接方法具有高通量和快速计算的优势,可以在大规模药物筛选中应用。然而,值得注意的是,Autodock分子对接的结果是理论预测,并不代表真实结合情况,因此还需要通过实验验证来进一步确认。 总之,Autodock分子对接是一种用于预测药物与蛋白质结合模式和强度的计算方法。它在药物研发中起到了重要的作用,可以用于筛选和设计合适的药物分子,为新药的发现提供有力的支持。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值