从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍
关键词:词向量,Word2Vec,神经网络,深度学习,自然语言处理(NLP),预训练,微调,Fine-Tuning
1. 背景介绍
1.1 问题由来
在深度学习蓬勃发展的今天,人工智能技术在自然语言处理(NLP)、计算机视觉、语音识别等领域取得了长足的进步。然而,语言和文本数据由于其高维度和非结构化特性,使得深度学习模型的训练和应用面临诸多挑战。如何高效地处理和表示文本数据,是大模型开发和应用的核心问题之一。
词向量(Word Embeddings)作为一种高效的文本表示方法,通过对文本中的单词进行向量化,使得计算机能够理解语言的语义和语法结构,从而提高模型在NLP任务上的性能。本文将详细介绍词向量训练模型Word2Vec的使用,包括其原理、实现步骤、应用场景和未来发展趋势。
1.2 问题核心关键点
Word2Vec是一种常用的词向量训练模型,通过神经网络对单词进行无监督学习,生成低维度的向量表示。Word2Vec模型具有以下核心特点:
- 词向量:将单词映射到低维向量空间