强化学习算法:深度 Q 网络 (DQN) 原理与代码实例讲解
关键词:强化学习, 深度 Q 网络 (DQN), 深度神经网络, 动作策略, 奖励函数, 探索-利用平衡, 经验回放 (Experience Replay), 多智能体
1. 背景介绍
1.1 问题由来
强化学习 (Reinforcement Learning, RL) 是一种模拟智能体 (Agent) 在环境 (Environment) 中通过与环境交互,学习最优决策的机器学习方法。强化学习的目标是最大化智能体在不同环境状态下的累积奖励。深度 Q 网络 (Deep Q Network, DQN) 是强化学习领域的一个里程碑,通过将深度神经网络技术引入 Q 学习算法,极大地提高了智能体的决策能力。
然而,DQN 模型虽然在很多环境中取得了优异的性能,但在处理高维状态空间、稀疏奖励、高动作维度等问题上仍然面临诸多挑战。为应对这些挑战,学术界和工业界陆续提出了多种改进方案,如重要性采样 (Importance Sampling)、双 DQN (Double DQN)、优先经验回放 (Prioritized Experience Replay) 等。
1.2 问题核心关键点
DQN 算法基于深度神经网络构建 Q 函数逼近器,利用