博学之,审问之,慎思之,明辨之,笃行之
1. 背景介绍
1.1 问题由来
在信息时代,知识更新迭代的速度不断加快,人们面临着前所未有的学习挑战。一方面,人类社会的知识总量呈爆炸性增长;另一方面,面对日益纷繁复杂的知识体系,人们难以在有限的时间内全面掌握所需的知识。
在此背景下,深度学习这一领域的技术逐渐兴起。深度学习不仅能够高效地处理大量数据,还能够通过不断迭代优化模型,提升其在特定领域中的表现。这种技术范式在许多领域都得到了广泛应用,如计算机视觉、自然语言处理、语音识别等。然而,深度学习的核心在于模型训练和优化,这需要庞大的数据集和大量的计算资源,对于普通用户而言,这无疑是一个巨大的挑战。
为应对这一挑战,研究者们开始探索一种新的知识获取方法——大模型微调。大模型微调是一种在预训练模型的基础上,通过少量数据进行有监督微调,从而在特定任务上提升模型性能的方法。这种技术不仅能够显著降低知识获取的门槛,还能够有效利用已有知识,加速新知识的获取过程。
1.2 问题核心关键点
大模型