博学之,审问之,慎思之,明辨之,笃行之

博学之,审问之,慎思之,明辨之,笃行之

1. 背景介绍

1.1 问题由来

在信息时代,知识更新迭代的速度不断加快,人们面临着前所未有的学习挑战。一方面,人类社会的知识总量呈爆炸性增长;另一方面,面对日益纷繁复杂的知识体系,人们难以在有限的时间内全面掌握所需的知识。

在此背景下,深度学习这一领域的技术逐渐兴起。深度学习不仅能够高效地处理大量数据,还能够通过不断迭代优化模型,提升其在特定领域中的表现。这种技术范式在许多领域都得到了广泛应用,如计算机视觉、自然语言处理、语音识别等。然而,深度学习的核心在于模型训练和优化,这需要庞大的数据集和大量的计算资源,对于普通用户而言,这无疑是一个巨大的挑战。

为应对这一挑战,研究者们开始探索一种新的知识获取方法——大模型微调。大模型微调是一种在预训练模型的基础上,通过少量数据进行有监督微调,从而在特定任务上提升模型性能的方法。这种技术不仅能够显著降低知识获取的门槛,还能够有效利用已有知识,加速新知识的获取过程。

1.2 问题核心关键点

大模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值