Transformer大模型实战:命名实体识别任务
关键词:Transformer, NER, 预训练, 微调, 迁移学习, 自然语言处理, 机器学习
1. 背景介绍
命名实体识别(Named Entity Recognition,NER)是自然语言处理(Natural Language Processing,NLP)领域的一项重要任务。它旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名、时间等。NER在信息提取、知识图谱构建、机器翻译、问答系统等领域有着广泛的应用。
随着深度学习技术的快速发展,基于神经网络的方法在NER任务上取得了显著的成果。Transformer模型作为一种自注意力机制(Self-Attention)的深度神经网络模型,因其强大的特征提取能力和并行处理能力,成为NER任务中的热门选择。
本文将深入探讨如何使用Transformer大模型进行NER任务实战,包括模型原理、操作步骤、代码实现、实际应用场景等。
2. 核心概念与联系
2.1 核心概念
2.1.1 Transformer模型
Transformer模型是