Transformer大模型实战 命名实体识别任务

Transformer大模型实战:命名实体识别任务

关键词:Transformer, NER, 预训练, 微调, 迁移学习, 自然语言处理, 机器学习

1. 背景介绍

命名实体识别(Named Entity Recognition,NER)是自然语言处理(Natural Language Processing,NLP)领域的一项重要任务。它旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名、时间等。NER在信息提取、知识图谱构建、机器翻译、问答系统等领域有着广泛的应用。

随着深度学习技术的快速发展,基于神经网络的方法在NER任务上取得了显著的成果。Transformer模型作为一种自注意力机制(Self-Attention)的深度神经网络模型,因其强大的特征提取能力和并行处理能力,成为NER任务中的热门选择。

本文将深入探讨如何使用Transformer大模型进行NER任务实战,包括模型原理、操作步骤、代码实现、实际应用场景等。

2. 核心概念与联系

2.1 核心概念

2.1.1 Transformer模型

Transformer模型是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值