Rice Seed Purity Identification Technology Using Hyperspectral Image with LASSO Logistic Regression Model
基于LASSO Logistic回归模型的水稻种子纯度高光谱识别技术
数据预处理:SNV,FD,SD
使用波段:第15至190个波段(450-950 nm)的数据
样本集划分:联合x-y距离(SPXY)算法,以1:1的比例随机划分为训练集和测试集
创新:将降维(LASSO)融合在模型(LRM)行中,形成新的模型LLR
即LASSO中的L1正则化应用在逻辑回归模型(LRM)进行二分类
摘要总结:
最小绝对收缩和选择算子(LASSO)算法的稀疏特征
逻辑回归模型(LRM)的分类特征
提出了一种基于LASSO逻辑回归模型(LLRM)的水稻种子纯度高光谱鉴别方法
全波段LRM的识别准确率为71.60- 100%,平均识别准确率仅为89.63%
LLRM的识别准确率为91.67-100%,平均识别准确率为98.47%
研究对象:四种类型的水稻种子:湖光香、湘晚粳、黄花占、粳530
每种类型包含72粒
13个不同的掺假案件
在每种情况下,正则化参数λ值不同,λ的值越小,惩罚越小,保留的变量越多
使用十倍交叉验证方法来选择λ的最佳值
所选特征波段的数量也有所不同
采用坐标下降法计算最佳λ值处的回归系数,基于回归系数选择特征波段
选择的特征波段的平均数目
SNV数据为11.3
FD数据为8.5
SD数据为9.5
SNV数据选择的特征波段相对较多,精度优于FD和SD数据
通过比较所有的LLRM,发现三种预处理方法的准确率分别提高了5.98%,10.55%和9.99%
FD处理后,实现100%的识别准确率的概率增加,意味着FD处理比其他方法更适合于LLRM
数据处理步骤:
第一步是数据预处理。ROI的反射率数据通过标准正态变量(SNV)变换和导数方法进行处理
第二步是背景分割,即从背景图像中分割出水稻种子像素,并获取和分析每个水稻种子的光谱特征
第三步是准备培训和测试集。将每种类型的72个纯种子和另外3个杂交种子的光谱特征组合在一起,以模拟种子的纯度,产生13个数据集。将这些数据集分为训练集和测试集
第四步,建模
第五步,数据输出
背景分割:
传统方法:自适应阈值法,对图像进行二值化,并将二值化后的图像作为模板。
论文中使用的方法:利用光谱的斜率信息来合成新的灰度图像
数据分组:
1-10组以湖光香为研究对象
1-4组:掺入等量的其他三种类型的种子,比例不同
5-7组:掺入不同量的其他三种种子
8-10组:分别,等量,掺入另一种种子
11-13组:分别以湘晚粳稻、黄花占和粳稻530为研究对象,每一组都掺杂了另外三种种子,每种种子有12粒
如图所示
结果表明,LLRM方法稳定地选择了关键波段,提高了高光谱数据的信噪比,在水稻种子识别中获得了较好的精度
1.介绍
2. 材料与方法
2.1. 样品制备和数据采集
2.2.数据处理流程
2.3.光谱特征提取
2.3.1.数据预处理+
2.3.2.图像分割
2.3.3.光谱特征
2.4.LLRM基础和优化
2.4.1.数据分组
2.4.2.样本集划分
2.4.3.LLRM
2.4.4最佳λ选择
3.结果
3.1.波段选择结果
3.2.波段选择
3.3模型精度比较
4.结论