基于matlab多目标非支配排序遗传算法 NSGA-II NSGA-III 单_多目标遗传算法

基于matlab多目标非支配排序遗传算法 NSGA-II NSGA-III 单/多目标遗传算法,求解:选址 货位分配 车间调度 生产线平衡 等问题matlab程序文档,50套经典程序。

内容丰富,注释详细,适合有一定基础的同学学习和提升

算法部分明细类目如下:

1、多阶段物流配送问题GA算法用于物流配送中心选址问题的解决

2、遗传算法来求解有关物流设施选址的问题

3、采用遗传算法对分布式电源进行选址定容计算

4、NSGA2求解多目标柔性作业车间的调度算法matlab源码

5、适合解多变量多目标规划问题,例如收益最大,风险最小,使用主要目标法,线性加权法,权值可自由设定

6、免疫遗传算法在物流中心选址中的应用

7、NSGA-II求解带有约束问题的多目标优化问题

8、NSGA-II解决TSP问题matlab源码

9、基于NSGA-II的求解多目标柔性车间调度算法

10、基于种群分解使用主元分析进行聚类分析和种群生成,种群进化使用NSGA-II选择机制优化

11、改进遗传算法在自动化立体仓库货位分配中的应用

12、选址问题

13、遗传算法来解决车辆和无人机联合配送问题

14、求解资源约束型装配线问题的改进遗传算法
在这里插入图片描述


为了帮助你理解并应用多目标非支配排序遗传算法(NSGA-II 和 NSGA-III)解决选址、货位分配、车间调度和生产线平衡等问题,下面我将提供一个基于MATLAB的NSGA-II算法的简化示例,并概述如何扩展此方法以涵盖你提到的具体应用场景。此外,我会给出一些资源建议,以便你能找到更多相关程序和文档。

NSGA-II 简化示例

以下是一个使用NSGA-II算法来解决一个假设的多目标优化问题的简化示例。该问题旨在最小化两个目标:成本和时间。你可以根据具体的应用场景调整目标函数和约束条件。

function nsga2_example()
    % 参数设置
    populationSize = 100;
    numVariables = 2; % 变量数量
    numObjectives = 2; % 目标数量
    numGenerations = 100;
    
    % 初始化种群
    population = rand(populationSize, numVariables);
    
    for generation = 1:numGeneratives
        % 计算适应度值
        fitnessValues = arrayfun(@(x) evaluateObjectives(population(x, :)), (1:populationSize)', 'UniformOutput', false);
        
        % 非支配排序
        [fronts, ~] = nonDominatingSort(fitnessValues);
        
        % 拥挤距离计算
        crowdingDistances = cellfun(@(f) crowdingDistanceAssignment(f), fronts, 'UniformOutput', false);
        
        % 选择操作
        selectedIndices = tournamentSelection(fronts, crowdingDistances, populationSize);
        parents = population(selectedIndices, :);
        
        % 交叉和变异
        offspring = crossoverAndMutation(parents, populationSize);
        
        % 新一代种群
        population = [parents; offspring];
    end
    
    % 输出结果
    bestSolutions = population(nonDominatingSort(arrayfun(@(x) evaluateObjectives(population(x, :)), (1:populationSize)', 'UniformOutput', false)){1}, :);
    disp(bestSolutions);
end

function objectives = evaluateObjectives(individual)
    % 定义目标函数
    objectives(1) = sum(individual.^2); % 假设第一个目标是平方和
    objectives(2) = -sum(individual); % 假设第二个目标是负数之和
end

function fronts = nonDominatingSort(fitnessValues)
    % 实现非支配排序逻辑
    % 这里仅作示意,实际实现需要更复杂的逻辑
    fronts = {fitnessValues}; % 示例中直接返回原始适应度值
end

function distances = crowdingDistanceAssignment(front)
    % 计算拥挤距离
    distances = ones(size(front, 1), 1); % 示例中所有个体的距离都设为1
end

function indices = tournamentSelection(fronts, crowdingDistances, selectionSize)
    % 实现锦标赛选择逻辑
    indices = randperm(length(fronts{1}), selectionSize); % 示例中随机选择
end

function offspring = crossoverAndMutation(parents, offspringSize)
    % 实现交叉和变异操作
    offspring = parents(randi([1, size(parents, 1)], offspringSize, size(parents, 2)), :); % 示例中直接复制父代
end

扩展到具体应用场景

  1. 物流配送中心选址问题:可以定义目标函数为总运输成本和最大服务响应时间。变量可以代表每个潜在位置是否被选中。

  2. 物流设施选址:类似上述问题,但可能涉及更多的变量和更复杂的约束条件,如交通流量、设施容量等。

  3. 分布式电源选址定容:目标函数可以包括电网稳定性、电力传输损耗等。变量代表每个可能位置的选择以及安装容量。

  4. 车间调度与生产线平衡:目标函数可以是最小化makespan和最大化资源利用率。变量可以代表每项任务的开始时间和使用的机器。

获取更多资源

对于想要深入学习和实践的同学,推荐以下几个途径获取更多相关代码和文档:

  • 学术论文数据库:如IEEE Xplore、ScienceDirect等,搜索“NSGA-II”、“NSGA-III”相关的应用论文。
  • 开源代码库:如GitHub上搜索“NSGA-II MATLAB”,可以找到很多公开项目。
  • 书籍:《Multi-Objective Optimization Using Evolutionary Algorithms》 by Kalyanmoy Deb 提供了详细的理论背景和案例研究。

希望这些信息能帮助你进一步理解和应用NSGA-II/III算法解决各类优化问题。

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值