Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer

时空图学习是交通流量、出租车需求、空气质量预测等城市计算任务的关键方法。由于数据收集成本高,一些发展中城市的可用数据很少,这使得训练一个性能良好的模型是不可行的。为了应对这一挑战,跨城市知识迁移已显示出其前景,从数据充足的城市中学习的模型被利用来有利于数据稀缺城市学习的过程。然而,不同城市间的时空图结构不规则、特征多样,限制了现有少样本学习(FSL)方法的可行性。为此,提出一种模型无关的时空图少样本学习框架ST-GFSL。具体而言,ST-GFSL提出基于节点级元知识生成非共享参数,通过迁移跨城市知识来增强特征提取;目标城市中的节点通过参数匹配,从相似的时空特征中检索知识进行转移。此外,本文建议在元学习过程中重建图结构。定义图重建损失来指导结构感知学习,避免不同数据集之间的结构偏差。在4个交通速度预测基准数据集上进行了综合实验,结果表明了ST-GFSL的有效性。

 

 在本节中,我们详细描述了所提出的ST-GFSL框架。我们首先概述st - gfsl,如图1所示。图的左侧显示了st - gfsl的输入。我们从多个城市迁移知识,而目标城市只有少量的训练样本。图的右侧主要由两部分组成:时空神经网络(STNN)和跨城市知识迁移。具体来说,STNN作为ST-GFSL中的基本特征提取器,其中可以使用任何时空学习架构,比如图神经网络(GNNs),循环神经网络(rnn)和其他最先进的时空图学习模型。其次,跨城市知识转移模块将知识转移到多个源城市,如图1中的灰色虚线框所示。具体而言,首先设计ST-Meta Learner 以获取空间和时间域的节点级元知识;生成非共享特征提取器参数𝜃𝑆𝑇,实现源城市数据和目标城市数据之间的自定义特征提取。通过重构不同城市的结构关系,进一步设计ST-Meta图重建算法,用于结构感知的元训练。ST-GFSL的端到端学习过程遵循MAML-based [14] episode learning。通过模拟目标城市的少样本场景,对批量的少样本训练任务进行采样,得到适应性强的基础模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值