森马携男装代言人徐志胜呈现「新常服美学众生相」,与大众共叙日常美学

4月27日,国民生活方式品牌森马携男装代言人徐志胜惊喜亮相上海环球港,通过美学众生相秀场诠释「森马 再造新常服」全新主张。

1745906996837051.jpg

新常服美学众生相活动现场

秀场即生活 以群像传递新常服美学

活动现场,森马男装代言人徐志胜携手脱口秀演员颜怡颜悦,与40位来自不同年龄、圈层的真实大众共同走秀,以松弛自信的姿态诠释品牌全新主张,将“真实即时尚”的生活美学呈现于大众视野。

1745909158387608.jpg

活动秀场

整场发布再现品牌主题创意片中充满活力的现代舞表演,更为惊喜的是脱口秀演员颜怡、颜悦作为领秀嘉宾开场亮相。伴随着地铁提示音,来自真实生活中的“新常服美学体验官”们开始了各具特色的走秀演绎——从上班通勤到休闲生活,从游乐园到轻户外,发布会现场通过多元群像的生动呈现,传递出森马服装的舒适百搭,更直观地演绎出众人在真实生活场景中的穿搭智慧。森马男装代言人徐志胜的压轴出场,引来全场观众欢呼互动。

徐志胜再爆金句 幽默诠释森马再造新常服  

在不久前上线的「价格猜」创意片,跟随徐志胜的观察,在地铁内呈现了不同人群的生活实景与多样穿搭。而本次活动中,现场装置也被巧妙复刻为城市生活图景中的地铁主题空间,成为大众秀场。徐志胜与颜怡、颜悦在秀后互动中通过幽默的即兴演绎,再爆金句。

1745909253565131.jpg

森马男装代言人徐志胜与特邀嘉宾颜怡颜悦

关于新常服理念,徐志胜表示:“能感受到新常服它不是在教我怎么穿得‘像样’,而是让我穿得‘像自己’。”来宾颜怡颜悦也在接受采访时大方分享了自己的想法,“这个“再造新常服”的概念很妙,它不是在卖衣服,而是在提供一种生活解决方案。而且也是一种很聪明的'生活策略'——给自己留出了更多精力,并且帮助自己去发现生活的乐趣。”

1745907068320195.jpg

嘉宾现场互动

国民品牌30年 以「新常服」回应时代需求

无论是创意短片发布,还是线下秀场呈现,森马再造新常服不仅体现了品牌对日常美学的细微觉察,更以国民品牌的责任与温度将一系列丰富的真实生活场景和人群百态搬回大众视野。

1745907083643305.jpg

「价格猜」创意片

作为全球第一制造大国近30年的服装企业,森马一直坚持在产品品质和设计研发上投入,以敏锐的市场嗅觉,精准匹配国民日益多元的生活审美与日渐提升的品质需求。在未来,森马将持续以高品质的服饰单品为核心,推出更多适用于大众生活场景的单品,不断焕新常人美学,回应属于大众的时尚叙事。

<think>好的,我现在需要帮助用户了解如何在本地部署通义Qwen2.5-Omni-7B模型。首先,我需要确认用户的需求,他们可能希望在自己的服务器或个人电脑上运行这个模型,所以必须了解部署的系统要求、步骤以及可能的代码示例。 根据提供的引用内容,这个模型是阿里巴巴开源的,支持多模态,包括文本、图像、音频和视频的处理,并且能够流式生成响应。因此,在部署时需要考虑多模态处理的能力以及硬件资源是否足够。 首先,系统要求方面,用户需要足够的计算资源。因为模型参数是7B规模,通常需要至少16GB的GPU显存,比如使用NVIDIA V100或A10这样的显卡。同时,内存方面建议32GB以上,存储空间需要至少20GB,因为模型文件本身可能较大,加上依赖库和数据集。软件环境方面,需要Python 3.8或更高版本,PyTorch框架,以及Hugging Face的Transformers库,这些都是运行此类模型的基础。 接下来,部署步骤。第一步是环境准备,安装必要的库,比如transformers、torch、sentencepiece等。用户可能需要使用pip安装这些依赖。然后,模型下载,可以通过Hugging Face Hub或者阿里巴巴提供的源获取模型文件。需要确保下载正确的模型版本,可能使用git lfs来下载大文件。 然后是代码示例,用户需要加载模型和分词器。使用AutoModelForCausalLM和AutoTokenizer来自动加载适合的模型结构和分词器。同时,可能需要配置设备映射,比如device_map="auto"让模型自动分配到可用的GPU上。预处理输入部分,可能需要处理多模态数据,比如图像或音频,需要特定的处理器来转换成模型可接受的输入格式。生成输出时,设置参数如max_length、temperature等来控制生成文本的长度和多样性。对于流式输出,可能需要使用generate的streamer参数,但需要查看模型的文档是否支持。 部署注意事项方面,显存优化是关键。如果显存不足,可以考虑量化技术,比如bitsandbytes库的8位或4位量化,或者使用模型并行将模型分散到多个GPU上。多模态处理部分,用户需要确保输入数据经过正确的预处理,比如图像需要resize和归一化,音频可能需要转换为频谱图等。流式响应可能需要结合WebSocket或服务器推送技术,但具体实现可能需要参考模型的API文档。 此外,用户可能需要参考官方文档和GitHub仓库,因为开源项目通常会有详细的安装和使用说明,以及可能的常见题解答。如果遇到题,检查依赖版本是否兼容,比如PyTorch和CUDA的版本是否匹配,transformers库是否更新到支持该模型的版本。 最后,生成相关题需要考虑用户可能进一步的题,比如性能优化方法、处理多模态输入的技巧,或者与其他模型的对比。这样可以帮助用户更全面地理解和应用该模型。</think>### 通义 Qwen2.5-Omni-7B 本地部署指南 #### 一、部署要求 1. **硬件配置** - **GPU**: 推荐 NVIDIA V100/A10/A100 等显存 ≥16GB 的显卡(7B 模型推理需约 14GB 显存) - **内存**: ≥32GB - **存储**: ≥20GB 可用空间(模型文件约 14GB) 2. **软件环境** - Python ≥3.8 - PyTorch ≥2.0(需与 CUDA 版本匹配) - Transformers ≥4.37.0 - 其他依赖:`sentencepiece`, `accelerate`, `bitsandbytes`(量化部署时需安装) #### 二、部署步骤 1. **环境准备** ```bash pip install torch transformers sentencepiece accelerate ``` 2. **模型下载** ```bash git lfs install git clone https://www.modelscope.cn/qwen/Qwen2.5-Omni-7B.git ``` 3. **基础推理代码示例** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "Qwen2.5-Omni-7B" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True ) # 文本推理示例 inputs = tokenizer("法国的首都是哪里?", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` #### 三、多模态处理(需额外安装依赖) ```bash pip install pillow soundfile torchaudio ``` ```python # 图像推理示例 from PIL import Image image = Image.open("test_image.jpg").convert("RGB") image_input = model.image_processor(image, return_tensors="pt").to("cuda") text_input = tokenizer("描述这张图片", return_tensors="pt").to("cuda") outputs = model.generate(**dict(text_input, **image_input)) ``` #### 四、显存优化方案 1. **4-bit 量化部署** ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", load_in_4bit=True, # 启用4-bit量化 bnb_4bit_compute_dtype=torch.float16 ) ``` 2. **模型并行** ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map={"": 0}, # 手动分配多GPU max_memory={0:"16GiB", 1:"16GiB"} ) ``` #### 五、流式响应实现 ```python from transformers import TextStreamer streamer = TextStreamer(tokenizer) inputs = tokenizer("请解释量子计算", return_tensors="pt").to("cuda") model.generate(**inputs, streamer=streamer, max_new_tokens=500) ``` #### 六、部署验证 执行以下命令测试模型响应: ```bash python -c "from transformers import pipeline; pipe = pipeline('text-generation', model='Qwen2.5-Omni-7B'); print(pipe('你好,请作一首七言诗', max_length=50)[0]['generated_text'])" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值