【数据分析】基于大数据的当当网图书畅销榜分析与可视化系统 | 可视化大屏 大数据毕设实战项目 选题推荐 文档指导 运行部署 Hadoop SPark

#【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道!#

💖💖作者:计算机毕业设计江挽
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

基于大数据的当当网图书畅销榜分析与可视化系统介绍

《基于大数据的当当网图书畅销榜分析与可视化系统》是一款专门针对当当网图书销售数据进行深度分析的大数据应用系统。该系统采用Hadoop分布式存储架构和Spark大数据处理引擎作为核心技术底座,能够高效处理海量图书销售数据,通过Python语言结合Django框架构建稳定的后端服务体系。系统前端采用Vue框架配合ElementUI组件库打造现代化的用户界面,利用Echarts图表库实现丰富的数据可视化展示效果。整个系统围绕当当网图书数据展开多维度分析,包含读者偏好分析模块,能够挖掘不同读者群体的阅读喜好和购买行为特征;价格与营销分析模块,深入研究图书定价策略和促销活动对销量的影响规律;市场趋势分析模块,通过时间序列分析预测图书市场的发展走向;作者与出版社分析模块,评估不同作者和出版社的市场表现和影响力。系统还提供数据大屏功能,通过直观的可视化界面实时展示关键业务指标,为图书行业从业者和研究人员提供有价值的数据洞察支持。

基于大数据的当当网图书畅销榜分析与可视化系统演示视频

【数据分析】基于大数据的当当网图书畅销榜分析与可视化系统 | 可视化大屏 大数据毕设实战项目 选题推荐 文档指导 运行部署 Hadoop SPark

基于大数据的当当网图书畅销榜分析与可视化系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的当当网图书畅销榜分析与可视化系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
import pandas as pd
from django.http import JsonResponse
from django.views import View
import json

spark = SparkSession.builder.appName("DangdangBookAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

class ReaderPreferenceAnalysis(View):
    def post(self, request):
        book_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "book_sales").option("user", "root").option("password", "123456").load()
        user_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "user_behavior").option("user", "root").option("password", "123456").load()
        joined_df = book_df.join(user_df, book_df.book_id == user_df.book_id, "inner")
        age_preference = joined_df.groupBy("age_group", "category").agg(count("*").alias("purchase_count"), avg("rating").alias("avg_rating")).orderBy(desc("purchase_count"))
        gender_preference = joined_df.groupBy("gender", "category").agg(count("*").alias("purchase_count"), sum("price").alias("total_amount")).orderBy(desc("total_amount"))
        region_preference = joined_df.groupBy("region", "category").agg(count("*").alias("purchase_count"), avg("price").alias("avg_price")).filter(col("purchase_count") > 10)
        time_preference = joined_df.withColumn("purchase_hour", hour("purchase_time")).groupBy("purchase_hour", "category").agg(count("*").alias("purchase_count")).orderBy("purchase_hour")
        reading_habit = joined_df.groupBy("user_id").agg(countDistinct("category").alias("category_diversity"), avg("reading_duration").alias("avg_reading_time"), count("*").alias("total_books"))
        preference_score = joined_df.groupBy("category").agg(avg("rating").alias("avg_rating"), count("*").alias("total_sales"), sum("price").alias("revenue")).withColumn("preference_score", col("avg_rating") * log(col("total_sales") + 1))
        category_correlation = joined_df.groupBy("user_id").pivot("category").agg(count("*")).fillna(0)
        seasonal_preference = joined_df.withColumn("season", when(month("purchase_time").isin([12, 1, 2]), "winter").when(month("purchase_time").isin([3, 4, 5]), "spring").when(month("purchase_time").isin([6, 7, 8]), "summer").otherwise("autumn")).groupBy("season", "category").agg(count("*").alias("purchase_count"))
        loyalty_analysis = joined_df.groupBy("user_id", "category").agg(count("*").alias("repeat_purchases"), max("purchase_time").alias("last_purchase"), min("purchase_time").alias("first_purchase")).withColumn("loyalty_days", datediff("last_purchase", "first_purchase"))
        price_sensitivity = joined_df.groupBy("category", "price_range").agg(count("*").alias("sales_count"), avg("rating").alias("avg_rating")).orderBy("category", "price_range")
        result_data = {"age_preference": age_preference.toPandas().to_dict("records"), "gender_preference": gender_preference.toPandas().to_dict("records"), "region_preference": region_preference.toPandas().to_dict("records"), "time_preference": time_preference.toPandas().to_dict("records"), "reading_habit": reading_habit.toPandas().to_dict("records"), "preference_score": preference_score.toPandas().to_dict("records"), "seasonal_preference": seasonal_preference.toPandas().to_dict("records"), "loyalty_analysis": loyalty_analysis.toPandas().to_dict("records"), "price_sensitivity": price_sensitivity.toPandas().to_dict("records")}
        return JsonResponse({"status": "success", "data": result_data})

class MarketTrendAnalysis(View):
    def post(self, request):
        sales_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "daily_sales").option("user", "root").option("password", "123456").load()
        monthly_trend = sales_df.withColumn("year_month", date_format("sale_date", "yyyy-MM")).groupBy("year_month", "category").agg(sum("sales_quantity").alias("total_sales"), sum("revenue").alias("total_revenue"), avg("price").alias("avg_price")).orderBy("year_month")
        growth_rate = monthly_trend.withColumn("prev_month_sales", lag("total_sales", 1).over(Window.partitionBy("category").orderBy("year_month"))).withColumn("growth_rate", (col("total_sales") - col("prev_month_sales")) / col("prev_month_sales") * 100).filter(col("prev_month_sales").isNotNull())
        seasonal_pattern = sales_df.withColumn("month", month("sale_date")).groupBy("month", "category").agg(avg("sales_quantity").alias("avg_monthly_sales"), stddev("sales_quantity").alias("sales_volatility")).orderBy("month")
        trending_books = sales_df.join(spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "books").option("user", "root").option("password", "123456").load(), "book_id").withColumn("week", weekofyear("sale_date")).groupBy("week", "book_title", "category").agg(sum("sales_quantity").alias("weekly_sales")).withColumn("sales_rank", row_number().over(Window.partitionBy("week", "category").orderBy(desc("weekly_sales")))).filter(col("sales_rank") <= 10)
        price_trend = sales_df.withColumn("quarter", quarter("sale_date")).withColumn("year", year("sale_date")).groupBy("year", "quarter", "category").agg(avg("price").alias("avg_price"), min("price").alias("min_price"), max("price").alias("max_price")).withColumn("price_volatility", (col("max_price") - col("min_price")) / col("avg_price"))
        market_concentration = sales_df.groupBy("publisher", "category").agg(sum("revenue").alias("publisher_revenue")).withColumn("total_category_revenue", sum("publisher_revenue").over(Window.partitionBy("category"))).withColumn("market_share", col("publisher_revenue") / col("total_category_revenue") * 100).filter(col("market_share") > 5)
        forecast_data = monthly_trend.withColumn("trend", avg("total_sales").over(Window.partitionBy("category").orderBy("year_month").rowsBetween(-2, 0))).withColumn("seasonal_factor", col("total_sales") / col("trend")).withColumn("next_month_forecast", col("trend") * avg("seasonal_factor").over(Window.partitionBy("category").orderBy("year_month").rowsBetween(-11, 0)))
        correlation_analysis = sales_df.groupBy("sale_date").agg(sum("sales_quantity").alias("total_daily_sales")).join(sales_df.filter(col("category") == "fiction").groupBy("sale_date").agg(sum("sales_quantity").alias("fiction_sales")), "sale_date").join(sales_df.filter(col("category") == "non_fiction").groupBy("sale_date").agg(sum("sales_quantity").alias("non_fiction_sales")), "sale_date")
        peak_analysis = sales_df.withColumn("day_of_week", dayofweek("sale_date")).groupBy("day_of_week", "category").agg(avg("sales_quantity").alias("avg_daily_sales"), max("sales_quantity").alias("peak_sales")).withColumn("peak_ratio", col("peak_sales") / col("avg_daily_sales"))
        inventory_turnover = sales_df.join(spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "inventory").option("user", "root").option("password", "123456").load(), "book_id").groupBy("category", "book_id").agg(sum("sales_quantity").alias("total_sold"), avg("stock_quantity").alias("avg_inventory")).withColumn("turnover_rate", col("total_sold") / col("avg_inventory"))
        result_data = {"monthly_trend": monthly_trend.toPandas().to_dict("records"), "growth_rate": growth_rate.toPandas().to_dict("records"), "seasonal_pattern": seasonal_pattern.toPandas().to_dict("records"), "trending_books": trending_books.toPandas().to_dict("records"), "price_trend": price_trend.toPandas().to_dict("records"), "market_concentration": market_concentration.toPandas().to_dict("records"), "forecast_data": forecast_data.toPandas().to_dict("records"), "peak_analysis": peak_analysis.toPandas().to_dict("records"), "inventory_turnover": inventory_turnover.toPandas().to_dict("records")}
        return JsonResponse({"status": "success", "data": result_data})

class AuthorPublisherAnalysis(View):
    def post(self, request):
        author_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "authors").option("user", "root").option("password", "123456").load()
        publisher_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "publishers").option("user", "root").option("password", "123456").load()
        book_sales_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/dangdang").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "book_sales_detail").option("user", "root").option("password", "123456").load()
        author_performance = author_df.join(book_sales_df, "author_id").groupBy("author_id", "author_name", "category").agg(sum("sales_quantity").alias("total_sales"), sum("revenue").alias("total_revenue"), avg("rating").alias("avg_rating"), countDistinct("book_id").alias("book_count")).withColumn("avg_sales_per_book", col("total_sales") / col("book_count")).withColumn("revenue_per_book", col("total_revenue") / col("book_count"))
        publisher_ranking = publisher_df.join(book_sales_df, "publisher_id").groupBy("publisher_id", "publisher_name").agg(sum("sales_quantity").alias("total_sales"), sum("revenue").alias("total_revenue"), countDistinct("book_id").alias("published_books"), countDistinct("author_id").alias("author_count")).withColumn("market_share", col("total_revenue") / sum("total_revenue").over() * 100).withColumn("avg_book_performance", col("total_sales") / col("published_books"))
        collaboration_analysis = book_sales_df.join(author_df, "author_id").join(publisher_df, "publisher_id").groupBy("author_name", "publisher_name").agg(count("*").alias("collaboration_count"), sum("revenue").alias("collaboration_revenue"), avg("rating").alias("collaboration_rating")).filter(col("collaboration_count") > 1).orderBy(desc("collaboration_revenue"))
        author_category_expertise = author_df.join(book_sales_df, "author_id").groupBy("author_id", "author_name", "category").agg(count("*").alias("books_in_category"), sum("revenue").alias("category_revenue"), avg("rating").alias("category_rating")).withColumn("total_books", sum("books_in_category").over(Window.partitionBy("author_id"))).withColumn("category_specialization", col("books_in_category") / col("total_books") * 100).filter(col("category_specialization") > 50)
        publisher_category_focus = publisher_df.join(book_sales_df, "publisher_id").groupBy("publisher_id", "publisher_name", "category").agg(count("*").alias("books_in_category"), sum("revenue").alias("category_revenue")).withColumn("total_publisher_books", sum("books_in_category").over(Window.partitionBy("publisher_id"))).withColumn("category_focus_rate", col("books_in_category") / col("total_publisher_books") * 100)
        author_trend = author_df.join(book_sales_df, "author_id").withColumn("publish_year", year("publish_date")).groupBy("author_id", "author_name", "publish_year").agg(sum("sales_quantity").alias("yearly_sales"), count("*").alias("books_published")).withColumn("prev_year_sales", lag("yearly_sales", 1).over(Window.partitionBy("author_id").orderBy("publish_year"))).withColumn("growth_trend", (col("yearly_sales") - col("prev_year_sales")) / col("prev_year_sales") * 100)
        publisher_efficiency = publisher_df.join(book_sales_df, "publisher_id").groupBy("publisher_id", "publisher_name").agg(sum("revenue").alias("total_revenue"), sum("marketing_cost").alias("total_marketing_cost"), countDistinct("book_id").alias("total_books")).withColumn("roi", (col("total_revenue") - col("total_marketing_cost")) / col("total_marketing_cost") * 100).withColumn("revenue_per_book", col("total_revenue") / col("total_books"))
        cross_category_success = author_df.join(book_sales_df, "author_id").groupBy("author_id", "author_name").agg(countDistinct("category").alias("categories_count"), sum("revenue").alias("total_revenue"), avg("rating").alias("overall_rating")).filter(col("categories_count") > 1).withColumn("versatility_score", col("categories_count") * col("overall_rating"))
        emerging_authors = author_df.join(book_sales_df, "author_id").filter(year("publish_date") >= 2022).groupBy("author_id", "author_name").agg(sum("sales_quantity").alias("recent_sales"), avg("rating").alias("recent_rating"), count("*").alias("recent_books")).filter(col("recent_sales") > 1000).withColumn("potential_score", col("recent_sales") * col("recent_rating"))
        publisher_discovery = publisher_df.join(book_sales_df, "publisher_id").join(author_df, "author_id").filter(year("publish_date") >= 2022).groupBy("publisher_id", "publisher_name").agg(countDistinct("author_id").alias("new_authors"), sum("revenue").alias("new_author_revenue")).withColumn("discovery_efficiency", col("new_author_revenue") / col("new_authors"))
        result_data = {"author_performance": author_performance.toPandas().to_dict("records"), "publisher_ranking": publisher_ranking.toPandas().to_dict("records"), "collaboration_analysis": collaboration_analysis.toPandas().to_dict("records"), "author_category_expertise": author_category_expertise.toPandas().to_dict("records"), "publisher_category_focus": publisher_category_focus.toPandas().to_dict("records"), "author_trend": author_trend.toPandas().to_dict("records"), "publisher_efficiency": publisher_efficiency.toPandas().to_dict("records"), "cross_category_success": cross_category_success.toPandas().to_dict("records"), "emerging_authors": emerging_authors.toPandas().to_dict("records"), "publisher_discovery": publisher_discovery.toPandas().to_dict("records")}
        return JsonResponse({"status": "success", "data": result_data})

基于大数据的当当网图书畅销榜分析与可视化系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计江挽
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值