YOLO系列
·YOLO-V3
·YOLO-V3
Ø
终于到V3了,最大的改进就是网络结构,使其更适合小目标检测
Ø
特征做的更细致,融入多持续特征图信息来预测不同规格物体
Ø
先验框更丰富了,3种scale,每种3个规格,一共9种
Ø
softmax改进,预测多标签任务
·多scale
Ø为了能检测到不同大小的物体,设计了3个scale
·scale变换经典方法
Ø左图:图像金字塔;右图:单一的输入;
·残差连接-为了更好的特征
Ø
从今天的角度来看,基本所有网络架构都用上了残差连接的方法
Ø
Ø
V3中也用了resnet的思想,堆叠更多的层来进行特征提取
·核心网络架构
Ø
没有池化和全连接层,全部卷积
Ø
Ø
下采样通过stride为2实现
Ø
Ø
3种scale,更多先验框
Ø
Ø
基本上当下经典做法全融入了


·先验框设计
Ø
YOLO-V2中选了5个,这回更多了,一共有9种
Ø
13*13特征图上:(116x90),(156x198),(373x326)
26*26特征图上:(30x61),(62x45),(59x119)
52*52特征图上:(10x13),(16x30),(33x23)
ØYOLO-V2中选了5个,这回更多了,一共有9种
·softmax层替代
Ø
物体检测任务中可能一个物体有多个标签
Ø
Ø
logistic激活函数来完成,这样就能预测每一个类别是/不是