点击蓝字 / 关注我们
导 读
本论文于2024年发表于知名期刊《Information Fusion》上。该论文旨在研究基于物理信息深度学习(PIDL)方法的交通状态估计问题,提出了一种新颖的模型,能够有效地应对交通流量数据稀疏的挑战。该模型结合了计算图方法与深度学习模型,能够自适应地学习交通流的时空特征和基本流量图之间的关系,从而实现准确的交通状态估计。通过在不同稀疏数据情境下进行大量的实验研究,利用美国101高速公路的NGSIM数据,深入探讨了PIDL方法在不同交通流场景中的应用,结果验证了该模型的高效性和精确度。
关键词 —
交通状态估计;物理信息深度学习;计算图;数据稀疏性;LWR模型;基本图作 者 / Jinlei Zhang,Shuai Mao,Lixing Yang,Wei Ma, Shukai Li,Ziyou Gao
标 题 / Physics-informed deep learning for traffic state estimation based on the traffic flow model and computational graph method.
文献来源 / Information Fusion, 2024, 101: 101971.
摘 要
交通状态估计(TSE)是智能交通系统中的一项关键任务。然而,由于交通数据质量通常受到设备安装位置、数据收集频率、传输过程中的干扰等因素的影响,导致数据稀疏性或数据丢失问题,因此极具挑战性。为了应对这一交通状态估计的挑战,我们提出了一种TSE模型,该模型结合了计算图方法与物理信息深度学习(PIDL)方法。首先,我们采用计算图方法来定义交通流图的参数。这些参数被嵌入到计算图框架中,变量的传播和误差反向传播由模型确定。接下来,我们采用PIDL方法来实现TSE(以LWR模型为基础的绿色信号灯流量模型为示例)。PIDL方法的优势在于数据驱动和模型驱动相结合,能够准确估计交通状态。案例研究采用了NGSIM数据集,研究了两种交通场景:环路检测器和地段检测器。实验结果表明,PIDL方法能够准确重建整个路段的交通状态,尤其在部分观察到的数据下。与纯深度学习方法或其他基准方法相比,PIDL方法在各种情况中表现得更好,从而证明了深度学习框架在交通状态估计中的应用潜力。本文的研究不仅探讨了数据稀疏性对交通状态估计的影响,还通过应用PIDL方法取得了显著的成果,具有重要的实际意义,特别是在实际交通流控制和管理中的应用。
问题分析与定义
问题分析
交通状态估计旨在通过对有限交通观测数据的分析与建模,推断整个路段的交通运行状态,如车速、车流量和密度等关键交通变量。相比于交通状态预测侧重于未来交通状态的演变,交通状态估计更聚焦于对当前未观测区域交通状态的重建,是实现交通管理系统实时感知与调控能力的重要技术基础。尤其在部分关键区域无检测器布设的情形下,准确估计交通状态对于提升交通系统运行效率和安全水平具有重要意义。尽管交通状态估计已取得广泛研究进展,但在实际应用中仍需考虑以下问题:
(1) 数据稀疏性:受限于交通传感器布设成本等因素,实际交通观测数据常存在空间和时间上的严重稀疏性,难以获得完整的车速或流量信息,直接影响估计精度和稳定性。
(2) 模型驱动方法的适应性有限:传统基于交通流模型的状态估计方法虽具有明确的物理意义,但模型参数通常依赖人工设定或经验值,难以准确刻画动态交通特性。此外,交通流模型难以适应复杂路况与交通行为变化,影响其实用性。
(3) 数据驱动方法对高质量数据依赖性强:数据驱动方法虽具备强大的拟合能力,但其性能高度依赖大规模高质量数据。在数据稀疏或质量较低的情况下,预测效果往往较差。
(4) 现有物理信息深度学习方法仍有局限:部分研究尝试将交通流模型嵌入深度学习框架,构建物理信息深度学习模型,取得了一定进展。然而,这些研究在基本图参数确定方面尚未进行深入探讨,大多数研究未提供具体的参数确定过程,或者直接基于整个路段的交通数据来确定参数值,这与实际情况不符。
基于此,为解决稀疏数据场景下的交通状态估计问题,本文提出了一种结合计算图方法与物理信息深度学习的交通状态估计模型。首先,利用计算图方法,基于稀疏数据确定交通流基本图参数,而非依赖完整数据。随后,构建深度神经网络结构并嵌入交通流模型,在损失函数中引入物理约束引导模型学习,显著增强了对稀疏数据场景下交通状态的建模能力。
问题定义
(1) 离散点
给定某一特定路段,整个时空域由一系列离散点组成,其中,
表示路段长度,
表示总时间跨度,(x, t)代表每个点具体的时空信息。为了便于计算,本文将路段离散化为均匀分布的网格点。本文主要针对稀疏数据场景下的交通状态估计,因此只能获取整个路段部分观测点的交通状态变量。此外,将观测点定义为
其中,No为观测点的总数。这些观测点通常仅占整个时空域的极小部分,例如全部数据的10%。
(2) 交通状态变量
以密度为例,(x, t)表示某一网格点的时空信息,ρ(x,t)表示该点对应的密度值。因此,整个路段的密度值可以表示为,而观测点处的密度值可以表示为
。在物理信息深度学习框架中,神经网络以(x, t)为输入,并输出相应的交通状态变量。
(3) 问题定义
将所有观测点的密度值定义为ρo,并将整个时空域的密度值定义为ρv,则交通状态估计问题可转化为学习映射函数,如下式所示,其目标是通过部分观测数据推断整个路段的交通状态。图1给出了交通状态估计问题的清晰表示。
模型构建
本节详细阐述了PIDL方法在交通状态估计中的应用,以应对数据稀疏性问题。首先,对模型的整体框架进行介绍,并概述了交通状态估计的基本思路。接着,详细描述了如何将交通流基本图参数嵌入计算图框架中,并基于稀疏数据确定这些参数。随后将确定的基本图参数应用于交通流模型,并通过PIDL方法实现交通状态估计。最后,本节重点讨论了损失函数的设计,该设计充分利用了交通流模型中蕴含的物理知识,以辅助神经网络的学习过程。PIDL方法结合了数据驱动与模型驱动方法的优势,不仅显著提升了神经网络的泛化能力,还增强了交通流模型在实际应用中的适用性。
PIDL模型
模型的整体框架如图2所示,该框架由三部分组成,模块A为用于实现交通状态估计的全连接神经网络,模块B为基本图参数确定过程,模块C是PIDL方法损失函数的设计,图中以道路密度为例进行说明。
模块A中的全连接神经网络以离散点(x, t)作为输入,并输出相应的交通状态变量。模块B以计算图的形式展示了交通流基本图参数的确定过程,每个参数和变量均包含在基本图公式中。其中,输入数据为[ρ, ρ2],而自由流速度vf与阻塞密度ρm的比值- vf / ρm是需要通过反向传播过程求解的参数。计算图的具体方向遵循基本图公式,且清晰地展示了变量之间的关系。最终,基于流量预测值与真实值之间的差异确定交通流基本图的两个关键参数:自由流速度vf和道路阻塞密度ρm。
模块C将损失函数设计为数据约束与物理约束的加权和,以平衡交通状态估计结果与交通流动力学方程之间的一致性,其中数据约束和物理约束分别用和
表示。数据约束通过预测值与实际值之间的偏差计算,而物理约束则基于交通流模型推导得出,物理约束结合了预定义的基本图参数。全连接神经网络的参数通过观测点的数据特征与交通流动力学方程联合优化,物理知识的引入在确保模型泛化能力和实际应用稳定性方面起到了关键作用。
在训练过程中,如果加权损失低于预设阈值或达到最大迭代次数,训练过程将停止,并输出整个路段的交通状态估计结果,否则训练将继续进行。此外,交通流基本图参数在PIDL估计过程中是预先确定的,不参与反向传播,在整个PIDL训练过程中被视为常数。
PIDL方法整体思路可总结如下:首先利用计算图方法确定交通流基本图参数,随后采用全连接神经网络进行交通状态估计,网络参数通过物理约束和数据约束联合优化。PIDL方法能够从稀疏数据中获取准确、及时的交通状态信息,为交通管理提供了一种有效的解决方案。
基本图参数确定
交通状态变量包括流量q、密度ρ和速度v,三者之间的关系如以下公式(公式1):
,
即流量等于密度与速度的乘积。其中,流量表示单位时间内通过某一点的车辆数,密度表示单位长度道路上某一时刻的车辆数,而速度则表示车辆在单位时间内通过的道路长度。该方程也被称为交通流基本方程,是交通流理论中最基础且最重要的方程之一。
交通流基本图是流量q、密度ρ和速度v之间关系的图形化表示。以Greenshields基本图为例,由于速度与密度之间的确切关系未知,Greenshields提出了一种线性函数来描述两者之间的关系。由于该函数是线性的,只需知道两个特定点,即(ρ=0, v=vf)和(ρ=ρm, v=0),即可确定速度与密度之间的关系。其中,vf表示自由流速度,ρm表示阻塞密度。根据公式(1),可以进一步推导出Greenshields基本图描述的交通状态变量之间的关系,如以下公式(公式2)所示。
图3展示了Greeenshields基本图描述的交通状态变量之间的关系。其中,速度-密度关系呈现预定义的线性关系,而速度-流量和流量-密度关系则呈现二次函数形式,但速度-流量关系的开口方向向左,如以下公式(公式3)所示。
图中,qc表示峰值流量,即道路的最大通行能力;ρc表示临界密度,即流量达到峰值时的密度;vc表示最优速度。
本文采用的计算图方法通过神经网络学习Greenshields基本图参数。该方法具有以下优势:首先,通过计算图描述基本图中的变量关系,能够清晰地表达变量之间的相互依赖性。此外,神经网络能够高效利用数据拟合基本图中的关系,从而获得更准确的参数估计。上述描述的流量q与密度v之间的关系可展开为以下公式(公式4):
其中交通流基本图参数,即自由流速度vf和阻塞密度ρm,需要通过神经网络确定。上式可进一步表示为适用于神经网络的矩阵形式,具体表达为以下公式(公式5):
。具体而言,用于参数确定的神经网络结构由输入层、隐藏层和输出层组成。输入为包含n对[ρ, ρ2]的序列,隐藏层为单层全连接层,包含两个神经元,分别表示自由流速度vf,自由流速度vf和阻塞密ρm比值的相反数-vf / ρm,网络中没有偏置项。输出层生成对应的n个流量值,即q值。
将公式4表示为计算图形式,其中前向传播和反向传播过程分别如图4和图5所示。计算图的顶点表示操作或变量,边表示它们之间的依赖关系。从图4中可以看出,在前向传播过程中,式的两个分量分别通过两次乘法运算得到,随后再通过加法运算得到流量的预测值,记为。流量预测值与真实值之间的差异构成损失函数
,通过最小化该损失函数来不断优化参数值。在反向传播过程中,为了便于表达微分关系,本文将-vf / ρm记为ω,并将公式4的两个分量分别表示为a和b。图5清晰地展示了整个反向传播过程以及基本图参数如何逐步优化。具体而言,通过微积分中的链式法则进一步展示损失函数对基本图参数的导数计算过程,如以下公式(公式6)所示:
以下公式(公式7)展示了两个参数的更新过程,
其中表示学习率,用于控制每次迭代中参数更新的幅度,参数的初始值已适当设置。通过神经网络的连续迭代训练,参数得以优化和更新,从而确定ω和vf的值,并进一步确定Greenshields基本图的两个关键参数:自由流速度vf和阻塞密度ρm。
本文所用计算图方法与普通神经网络的区别在于,普通神经网络训练的参数缺乏物理意义,其训练过程仅是为了调整参数以使结果与观测值相似,而本文所用方法为神经网络的参数赋予了实际的物理意义,即自由流速度vf,自由流速度和阻塞密度比值的相反数- vf / ρm,从而打开了神经网络的“黑箱”,使其具有可解释性。
本文针对稀疏数据场景,因此通过稀疏采样获取有限数量的密度值ρ(x, t)和流量值q(x,t)数据,以贴近实际场景。计算图方法利用这些数据通过反向传播算法更新全连接层中的参数,从而使神经网络能够更好地拟合自由流速度vf和阻塞密度ρm。训练完成后,本文采用均方误差(MSE)评估整个路段流量估计值与真实值之间的差异,同时反映参数确定的准确性。MSE计算过程如以下公式(公式8)所示:
计算图方法能够有效学习交通流基本图中的关键参数,从而在稀疏数据场景下显著提升交通状态估计精度。此外,该方法以图形化方式表示变量之间的依赖关系,使得参数优化过程更加透明且易于理解。
交通状态估计
图6展示了PIDL方法在交通状态估计中的应用,为了更加清晰地说明,此部分删除了基本图参数确定部分,因为参数已经预先确定。整体框架主要由两部分组成:全连接神经网络和PIDL损失函数设计。全连接神经网络负责估计交通状态变量,而损失函数则将交通流模型中蕴含的物理知识整合到神经网络中。
全连接神经网络由输入层、隐藏层和输出层组成,其输入为(x, t),输出为密度估计值。隐藏层对输入进行加权和非线性变换,𝜃表示网络参数。全连接神经网络计算过程可表示为以下公式(公式9):
其中,X表示所有离散输入(x, t),和
分别为隐藏层和输出层的权重矩阵,
和
为对应的偏置向量。σ表示激活函数,用于激活隐藏层神经元的输出。全连接网络将输入(x, t)映射为隐藏层向量,并进一步映射为输出向量
,该输出值可用于后续损失函数计算。全连接网络参数𝜃在训练过程中以交通流方程为指导,并通过最小化损失函数进行优化。
本文将LWR交通流模型与神经网络相结合实现交通状态估计。LWR模型是一种基于守恒定律的经典交通流模型,其基本假设是交通流守恒,即流入道路一端的车辆数等于流出另一端的车辆数。LWR模型方程如以下公式所示(公式10):
其中ρ(x, t)表示位置x、时间t处的交通流密度,q(x, t)表示相应的流量值。
通过将LWR模型嵌入神经网络框架,交通流物理规律被整合到模型中,从而显著增强了模型的鲁棒性与泛化能力。为了在神经网络训练过程中保留交通流物理规律,PIDL损失函数由数据约束和物理约束两部分构成,其中数据约束用于衡量神经网络的拟合能力,而物理约束能够将交通流方程嵌入到神经网络中。两部分损失通过加权求和得到最终的损失函数,该设计结合了数据驱动方法和模型驱动方法的优势,从而提高交通状态估计的准确性与稳定性。本文将数据约束表示为,将物理约束表示为
,最终的损失函数如以下公式所示(公式11):
如想了解损失函数具体设计细节请见原文。
实验部分
实验设置
本节首先对所采用的实验数据集进行详细介绍,明确了选取的高速公路路段、具体的观测时间段等信息。随后,分别介绍了交通流基本图参数确定和基于PIDL的交通状态估计的模型参数配置和实现细节。最后,针对不同稀疏程度的环路检测器和探测车数据场景,确定了对应的交通流基本图参数设置,为后续实验验证提供数据基础。
数据集
NGSIM数据集通过在路边安装高清摄像头和雷达等传感器,记录美国多条高速公路和城市道路上的车辆轨迹数据。除车辆轨迹数据外, NGSIM数据集还提供了流量、密度等统计信息,其已成为交通领域广泛使用的标准数据集之一。
本文选取了US101高速公路上一段2060英尺的路段作为研究对象,具体时间为2005年4月13日上午8:20至8:35。因此数据的时间跨度为15分钟,空间跨度为2060英尺。数据的时间分辨率为5秒,空间分辨率为20英尺,共有180个时间单元和103个空间单元。利用PIDL方法,本文对整个路段的交通状态进行了估计,包含18,540个估计单元。为了获取自由流速度vf和阻塞密度ρm这两个必要参数,流量值也是所需的数据之一。图7展示了整个路段的密度、速度和流量数据,从图中可以清晰地看出交通拥堵的反向传播的现象。
本文将PIDL方法应用于环路检测器和探测车两种稀疏数据场景,其示意图如图7右下角所示。环路检测器场景假设环路检测器均匀分布在整个路段上,且只有安装检测器的位置才能观测到交通状态变量,检测器记录频率与数据的时间分辨率一致。在探测车场景中,观测数据是随机选择的,只有被选中的点具有观测值。两种场景均使用有限数量的观测数据重建整个路段的交通状态,从而验证PIDL方法的有效性。
模型配置
模型配置分为交通流基本图参数确定和基于PIDL的交通状态估计两部分。交通流基本图参数是通过基于计算图的全连接神经网络确定的,该网络仅包含输入层和输出层,没有中间隐藏层,输入为密度值及其平方项[ρ,ρ2],输出为流量值q。神经网络有两个可学习参数:vf和-vf/ ρm,且没有偏置项或激活函数。优化算法采用Adam,其自适应调整学习率以加速收敛过程。初始学习率设置为0.01,最大迭代次数为50,000。损失函数为流量估计值与真实值之间的均方误差,网络参数通过反向传播更新,确保收敛到合适的值。
PIDL神经网络以路段时空信息(x,t)作为输入,并输出相应的交通状态变量。该神经网络由8层全连接网络构成,每层网络包含20个神经元,激活函数为tanh。神经网络的各层权重通过Xavier方法进行初始化,该方法减少了训练初期梯度消失或梯度爆炸等问题的发生,从而加速网络收敛并提高训练效果。本文采用L-BFGS算法优化收敛过程,该算法迭代100次耗时约3秒,计算速度较快。PIDL网络基于TensorFlow深度学习框架实现,并在NVIDIA GeForce RTX 3080 GPU上进行训练。
参数确定
为了将PIDL方法应用于交通状态估计任务,需要预先通过计算图方法在稀疏数据场景下确定交通流基本图参数vf和ρm。本节通过模拟不同数量的环路检测器和探测车数据来确定相应的参数值。
图8展示了整个路段的流量-密度数据(用蓝色表示)以及在不同环路检测器场景下获得的观测值(用红色表示)。从图中可以看出数据分布不均匀,大部分数据集中在密度[0.05, 0.15]区间范围内,其余部分仅有少量数据点。环路检测器的观测数据与整体数据分布相似,反映了交通流的传播与扩散特性。整体数据分布与整体数据分布与Greenshields基本图中描述的流量-密度关系具有相似性,表明Greenshields基本图能够在一定程度上反映交通状态变量之间的关系。然而,由于图8并未完全符合Greenshields基本图中流量与密度之间的二次函数关系,其建模精度存在一定局限性。
表1展示了在不同数量环路检测器场景下获得的交通流基本图参数结果,本文假设环路检测器均匀分布在整个路段上。当使用不同数量检测器的观测值估计整个路段的交通状态时,应采用相应的交通流参数。确定基本图参数后,将其应用于整个数据集,并根据Greenshields基本图中的流量-密度关系,基于密度值计算流量值,随后计算流量估计值
与真实值之间的均方误差。从表中可以看出,无论环路检测器的数量如何,整体误差相对较大。此外,误差并未随着检测器数量的增加而显著减小,反而有增大的趋势。这是因为数据分布较为集中,存在大量重叠区域,一个密度值可能对应多个流量值,因此无需完全符合流量-密度关系,只需捕捉大部分数据分布的整体趋势即可。
通过计算图方法学习到的流量-密度关系如图9所示。左上角为在六个数量环路检测器场景下使用全连接神经网络得到的结果,其余部分为在不同数量环路检测器场景(此处选择6、8和10个检测器)下使用计算图方法得到的结果。由于Greenshields基本图描述的流量-密度关系遵循二次函数形式,计算图方法的学习结果也呈现出二次函数图形,与Greenshields基本图公式一致。相比之下,全连接神经网络仅基于数据的潜在特征学习流量-密度关系,未依赖任何先验知识。因此,基于图9上半部分对六个数量环路检测器场景的比较,可以观察到全连接神经网络的拟合结果更符合实际情况。由此可知,基本图描述的交通状态变量之间的关系与实际情况存在差异,且在道路密度接近阻塞密度时尤为明显,这种差异一定程度上影响了PIDL方法的结果。
为了获得探测车场景下的交通流基本图参数,本文依然采用计算图方法确定其值。探测车场景中的观测数据数量与环路检测器场景一致,约占整体数据的5%-10%,且这些观测数据是随机选择的。表2展示了探测车场景下不同数量观测数据对应的基本图参数值,其结果与环路检测器场景基本一致,仅有微小差异。
实验结果与分析
为全面评估本文方法在不同数据场景下的适用性与估计性能,本节将围绕环路检测器场景与探测车场景展开实验验证,并对实验结果进行分析。此外,为进一步验证所提方法的有效性与先进性,本节还选取了多种主流基准模型进行对比实验,分析不同模型在稀疏数据条件下的表现差异,综合展示本文方法在提升估计精度、增强模型泛化能力方面的优势。
环路检测器场景
确定交通流基本图参数后,结合LWR交通流模型的PIDL方法可用于估计整个路段的交通状态。本文将环路检测器数量设置为5-10个,当检测器数量为10时,观测数据约占总数据的10%,充分体现了数据的稀疏性。表3展示了不同检测器数量场景下基于基本图参数的交通状态估计
误差。从表中可以看出,随着环路检测器数量的增加,速度和密度估计误差不断降低,表明观测数据规模对估计结果具有显著影响。PIDL方法在速度估计中表现尤为突出,当检测器数量大于等于7时,误差可降至10%以下。尽管密度估计误差相对较高,但仍处于可接受范围内。此外,即使在检测器数量较少的情况下,PIDL方法仍能实现合理的交通状态估计,证明PIDL方法能够有效利用交通流模型中蕴含的物理规律。
为了证明物理约束对先验点的重要性,本文在10个环路检测器场景下使用相同的全连接神经网络进行交通状态估计,区别仅在于是否在损失函数中加入物理约束项以指导训练过程。图12右侧为PIDL方法的估计结果,左侧为无物理约束的常规深度学习(DL)神经网络的估计结果,图中对比清晰地表明,PIDL方法优于DL神经网络。由于训练数据有限,DL神经网络过于依赖观测数据,导致过拟合现象。尽管在观测点上表现良好,但其无法准确估计先验点的交通状态,表明其泛化能力较差。而在PIDL方法中,交通流模型先验知识为训练提供指导,通过对不符合交通流方程的先验点估计结果进行惩罚,PIDL方法有效避免了过拟合。PIDL损失函数中的物理约束项使得模型能够充分利用稀疏数据,并凭借其独特优势实现了准确的交通状态估计。
探测车场景
本文在整个时空域中随机选择网格点作为观测点,以模拟探测车场景,观测点数量与环路检测器场景一致,结果如表4所示。从表中可以看出,随着观测点数量的增加,速度与密度估计结果的相对误差逐渐降低,因为神经网络获得了更多的数据以辅助训练。当观测点数量达到1800时,速度估计的
相对误差降至7.42%,表现出良好的性能。然而,密度估计误差仍然相对较高,这可能是因为路段密度的变化情况更为复杂,神经网络难以准确估计。
图13和图14展示了当观测点数量为1800(约占总数据的10%)时,速度与密度的整体估计结果,以及t=300s、500s和700s时刻的快照。右侧为真实值,左侧为使用PIDL方法获得的估计结果。速度估计整体表现良好,与地面真实值接近,尽管密度估计结果不如速度估计准确,但仍与真实值基本吻合。通过对比速度与密度在特定时刻的快照可以看出,密度比速度表现出更频繁的波动和更高的复杂性,导致密度估计与速度估计之间存在差异,因为神经网络更擅长拟合趋势明显的情况。
实验结果表明,在探测车场景下,PIDL方法依然表现出优异的性能,证明了其能够有效利用多源数据进行交通状态估计,同时也展现了其适应不同稀疏数据场景的能力。此外,实验结果进一步验证了PIDL方法在稀疏数据条件下进行交通状态估计的显著优势,通过交通流模型物理约束,PIDL能够有效指导先验点的训练过程,使其估计结果不断逼近地面真实值,从而在稀疏数据场景下实现高精度的交通状态估计。
对比实验
为了验证PIDL方法应对交通状态估计问题的有效性,本文在环路检测器场景下设置了多个基准模型进行对比实验。基准模型的简要描述如下:
LWR-PIDL:LWR-PIDL方法通过在神经网络损失函数中加入结合Greenshields基本图的LWR交通流模型指导神经网络的学习过程,在有限观测数据的情况下,重建整个路段的交通状态。
NN(标准神经网络):为了突出在神经网络中嵌入物理信息以约束训练过程的重要性,本文采用标准全连接神经网络作为基准模型。该模型与PIDL方法的参数设置完全一致,唯一区别在于其损失函数中未加入物理约束项。
Interp2(二维线性插值):二维线性插值是一种在二维空间中生成未知数据的数学方法。该方法基于已知密度或速度数据之间的线性关系,通过构建线性方程预测其周围的值。
STI(时空插值):该方法基于一组离散数据点{xi, ti, vi},在给定的时空域内推导出平滑的速度场。STI方法结合了空间和时间信息,能够准确预测缺失或未观测的数据。
LSTM(长短时记忆网络):LSTM是一种特殊的循环神经网络,用于处理与时间相关的序列数据。本文将速度或密度数据展平为序列,并基于历史数据通过LSTM估计相邻的速度或密度数据。
图15展示了不同基准模型在不同数量环路检测器场景下估计值与真实值之间的误差。检测器数量代表可用数据的规模,检测器数量越多,越有利于估计整个路段的交通状态。不同方法具有各自的特性,这决定了其在不同场景下的性能。NN和LSTM方法是基于深度学习的模型,能够挖掘数据之间的关系。而STI和Interp2方法依赖于插值原理,利用观测点数据估计未观测点的值。LWR-PIDL方法将交通流模型与深度学习模型相结合,实现了物理信息与数据驱动的融合。
实验结果表明,随着环路检测器数量的增加,所有模型的误差均呈现下降趋势。由于更多训练数据的可用性,NN和LSTM方法表现出明显的下降趋势,这些数据提供了额外的信息,使其能够更好地学习和适应数据的特性。Interp2和STI方法在不同数量检测器场景下的误差变化相对稳定,这种稳定性源于插值方法固有的平滑性和连续性,使其对整体时空特征的变化敏感度较低。此外,随着可用数据的增加,插值方法在捕捉数据细节和复杂特征方面具有一定局限性。LWR-PIDL方法在所有场景下始终保持最低误差水平,这主要得益于其有效结合交通流模型与深度学习模型的能力。通过利用物理信息进行交通状态估计,LWR-PIDL方法最大限度地减少了误差。
在不同数量检测器场景下,NN和LSTM方法的误差相对较高,尽管误差随着检测器数量的增加而减小,但其整体性能仍不理想。这是因为NN和LSTM方法通常需要大量数据进行训练,而稀疏数据场景无法充分发挥其优势,导致性能相对较差。此外,当数据量较小或质量较低时,NN和LSTM方法可能会出现过拟合现象。Interp2和STI方法表现出相对较好的性能,其利用时空域中邻近点的信息进行插值,这种插值方法有效利用了交通流的物理特性和空间相关性。相比之下,NN和LSTM方法更依赖于数据的潜在特征,对物理信息的利用较少。LWR-PIDL方法表现最佳,该方法不需要大量数据进行训练,且能够利用交通流的物理特性降低估计误差。
综上所述,与其他基线模型相比,PIDL方法能够实现稳定、高精度的交通状态估计。交通流模型能够捕捉交通流的时空演化过程,揭示其物理行为与传播模式,深度学习模型则能够学习时空数据的复杂特征。通过联合建模时空相关性,PIDL方法能够基于部分观测数据准确重建整个路段的交通状态,提供稳定、精确的估计结果。PIDL方法结合了数据驱动与模型驱动方法的优势,不仅增强了神经网络的泛化能力,还提高了交通流模型的适用性。
总结
在本文中,我们介绍了一种基于交通流模型和计算图方法的物理信息深度学习交通状态估计方法。PIDL方法应用于稀疏数据场景下的交通状态估计,而计算图方法用于确定基本图的关键参数。主要结论总结如下:
PIDL方法将交通流模型中固有的交通流规律作为先验知识,增强了深度学习模型的泛化能力和可靠性。
在环路检测器和探测车辆稀疏数据场景中的实验结果表明,PIDL方法实现了准确的交通状态估计,并且优于其他基线模型。
此外,PIDL方法可以视为数据驱动和模型驱动方法结合的典型例子,为其在其他领域的应用提供了见解。通过该方法的研究和应用,我们可以更好地理解数据驱动方法和模型驱动方法的优势与劣势,以及它们在交通状态估计中的作用。
未来的工作应考虑:1)将更高阶的交通流模型纳入PIDL中,以获得更准确的交通状态估计结果;2)从多个来源获取数据,并将其集成到模型中,以获取更全面和多样化的信息,从而提高估计性能。