P1967 [NOIP 2013 提高组] 货车运输

P1967 [NOIP 2013 提高组] 货车运输

题目背景

NOIP2013 提高组 D1T3

题目描述

A 国有 n n n 座城市,编号从 1 1 1 n n n,城市之间有 m m m 条双向道路。每一条道路对车辆都有重量限制,简称限重。

现在有 q q q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入格式

第一行有两个用一个空格隔开的整数 $ n,m$,表示 A 国有 $ n$ 座城市和 m m m 条道路。

接下来 m m m 行每行三个整数 x , y , z x, y, z x,y,z,每两个整数之间用一个空格隔开,表示从 $x $ 号城市到 $ y $ 号城市有一条限重为 z z z 的道路。
注意: x ≠ y x \neq y x=y,两座城市之间可能有多条道路 。

接下来一行有一个整数 q q q,表示有 q q q 辆货车需要运货。

接下来 q q q 行,每行两个整数 x , y x,y x,y,之间用一个空格隔开,表示一辆货车需要从 x x x 城市运输货物到 y y y 城市,保证 x ≠ y x \neq y x=y

输出格式

共有 q q q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。
如果货车不能到达目的地,输出 − 1 -1 1

输入输出样例 #1

输入 #1

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3

输出 #1

3
-1
3

说明/提示

对于 30 % 30\% 30% 的数据, 1 ≤ n < 1000 1 \le n < 1000 1n<1000 1 ≤ m < 10 , 000 1 \le m < 10,000 1m<10,000 1 ≤ q < 1000 1\le q< 1000 1q<1000

对于 60 % 60\% 60% 的数据, 1 ≤ n < 1000 1 \le n < 1000 1n<1000 1 ≤ m < 5 × 1 0 4 1 \le m < 5\times 10^4 1m<5×104 1 ≤ q < 1000 1 \le q< 1000 1q<1000

对于 100 % 100\% 100% 的数据, 1 ≤ n < 1 0 4 1 \le n < 10^4 1n<104 1 ≤ m < 5 × 1 0 4 1 \le m < 5\times 10^4 1m<5×104,$1 \le q< 3\times 10^4 $, 0 ≤ z ≤ 1 0 5 0 \le z \le 10^5 0z105

思路:

本题可以用Kruskal重构树来做,假如说有 n n n 个点 u → v u → v uv 是其中一条边,边权 w w w ,然后我们就新建立一个节点 x x x n + 1 n + 1 n+1 ,让这个点为两者的父节点点权 w w w。这样就是 { u 1 , v 1 , x } \{u_1, v_1, x\} {u1,v1,x}, 同理也可以得到另一个边的是 { u 2 , v 2 , y } \{u_2, v_2, y\} {u2,v2,y} 这两个代表源分别是 x x x y y y ,然后我们建立一个新的点 z z z n + 3 n + 3 n+3.然后再把这两个连接起来就变成了 { u 1 , v 1 , u 2 , v 2 , x , y , z } \{u_1, v_1, u_2, v_2, x, y, z\} {u1,v1,u2,v2,x,y,z} 代表源就变成了 z z z
Kruskal重构树
上图就是 K r u s k a l Kruskal Kruskal 重构树的构建,我们发现当我们重构树是通过 K r u s k a l Kruskal Kruskal 得到的最大生成树的时候,我们建立起来的父节点都是两点之间最大边权的最小值。而我们建立最小生成树(MST)的时候,我们的点权是两点之间最小边权的最大值。

于是我们就得到了一条规则:
构建最大生成树,建立起来的父节点都是两点之间最小边权的最大值
构建最小生成树,建立起来的父节点都是两点之间最大边权的最小值

K r u s k a l B u i l d T r e e KruskalBuildTree KruskalBuildTree 的构建代码

本题构建的是最大生成树 (不一定全部连通,可能是生成树森林)

inline void KruskalBuildTree() {
	std::sort(adj.begin(), adj.end(), std::greater<Node>());
    Rep(i, 1, 2 * n + 1) F[i] = i;
	int tot = n;

	rep(i, m) {
		int u = adj[i].u, v = adj[i].v, w = adj[i].w;
		int fu = Findest(u), fv = Findest(v); 
		if(fu == fv) continue;

		tot++;
		cost[tot] = w; // 得到新建父节点的点权
		F[tot] = F[fu] = F[fv] = tot;

		add(tot, fu);
		add(tot, fv);
		add(fu, tot);
		add(fv, tot);
	}
	// 检测连通性,不一定全部连通,可能是生成树森林
	Rep(i, 1, tot + 1) {
		if(F[i] == i) {
			DFS1(i, 0);
			DFS2(i, i);
		}
	}

}

LCA部分,两种写法:

树链剖分:

// 取得fa, dep, sz, son
void DFS1(int u, int father) {
	fa[u] = father, dep[u] = dep[father] + 1, sz[u] = 1;
	for(int i = h[u]; ~i; i = e[i].ne) {
		int v = e[i].v;
		if(v == father) continue;
		DFS1(v, u);
		sz[u] += sz[v];
		if(sz[son[u]] < sz[v]) son[u] = v;
	}
}

// 取得top
void DFS2(int u, int t) {
	top[u] = t;
	if(!son[u]) return ;
	DFS2(son[u], t);
	for(int i = h[u]; ~i; i = e[i].ne) {
		int v = e[i].v;
		if(v == fa[u] || v == son[u]) continue;
		DFS2(v, v);
	}
}

inline int LCA(int u, int v) {
	while(top[u] != top[v]) {
		if(dep[top[u]] < dep[top[v]]) std::swap(u, v);
		u = fa[top[u]];
	}
	return dep[u] < dep[v] ? u : v;
}

倍增:

// 创建ST表
void DFS(int u, int father, int val) {
    dep[u] = dep[father] + 1;
    F[u][0] = father;
    num[u][0] = val;

    for(int i = 1; i <= log2(n); i++) {
        F[u][i] = F[F[u][i - 1]][i - 1];
        num[u][i] = std::min(num[u][i - 1], num[F[u][i - 1]][i - 1]);
    }
    for(const auto& [v, w] : adj[u]) if(v != father) DFS(v, u, w);
}

inline int LCA(int u, int v) {
    int res = INF;
    if(dep[u] < dep[v]) std::swap(u, v);
    for(int i = log2(n); i >= 0; i--) {
        if(dep[F[u][i]] >= dep[v]) {
            res = std::min(res, num[u][i]); 
            u = F[u][i];
        }
    }

    if(u == v) return res;
    for(int i = log2(n); i >= 0; i--) {
        if(F[u][i] != F[v][i]) {
            res = std::min(res, std::min(num[u][i], num[v][i]));
            u = F[u][i], v = F[v][i];
        }
    }
    res = std::min(res, std::min(num[u][0], num[v][0]));
    return res;
}

int Findest(int x) {
    return x == fa[x] ? x : fa[x] = Findest(fa[x]);
} 

注意:
1.建立新节点连接的时候连接的是根节点(集合的代表源),也就是 f u fu fu f v fv fv
2.树链剖分的时候不要定义的时候初始化,不然会出现错误,初始化在 D F S 1 DFS1 DFS1 里面有的
3.建树的时候不要在建边的时候建,在并查集的时候建边

K r u s k a l 重构树 + L C A ( 树链剖分 ) Kruskal重构树 + LCA(树链剖分) Kruskal重构树+LCA(树链剖分)
AC code:

#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <algorithm>

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> PII;

#define rep(i, n) for(int i = 0; i < n; i++)
#define Rep(i, len, n) for(int i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000

const int INF = std::numeric_limits<int>::max();

struct Node {
	int u, v, w;
	bool operator> (const Node& other) const{
		return w > other.w;
	}
};

struct edge {
	int v, ne, w;
};

int n, m, q;
std::vector<Node> adj;
std::vector<edge> e;
std::vector<int> h, sz, fa, F, dep, top, son, cost;

inline void add(int a, int b) {
	e.push_back({b, h[a]});
	h[a] = e.size() - 1;
}

void DFS1(int u, int father) {
	fa[u] = father, dep[u] = dep[father] + 1, sz[u] = 1;
	for(int i = h[u]; ~i; i = e[i].ne) {
		int v = e[i].v;
		if(v == father) continue;
		DFS1(v, u);
		sz[u] += sz[v];
		if(sz[son[u]] < sz[v]) son[u] = v;
	}
}

void DFS2(int u, int t) {
	top[u] = t;
	if(!son[u]) return ;
	DFS2(son[u], t);
	for(int i = h[u]; ~i; i = e[i].ne) {
		int v = e[i].v;
		if(v == fa[u] || v == son[u]) continue;
		DFS2(v, v);
	}
}

inline int LCA(int u, int v) {
	while(top[u] != top[v]) {
		if(dep[top[u]] < dep[top[v]]) std::swap(u, v);
		u = fa[top[u]];
	}
	return dep[u] < dep[v] ? u : v;
}

int Findest(int x) {
	return x == F[x] ? x : F[x] = Findest(F[x]);
}

inline void KruskalBuildTree() {
	std::sort(adj.begin(), adj.end(), std::greater<Node>());
    Rep(i, 1, 2 * n + 1) F[i] = i;
	int tot = n;

	rep(i, m) {
		int u = adj[i].u, v = adj[i].v, w = adj[i].w;
		int fu = Findest(u), fv = Findest(v); 
		if(fu == fv) continue;

		tot++;
		cost[tot] = w;
		F[tot] = F[fu] = F[fv] = tot;

		add(tot, fu);
		add(tot, fv);
		add(fu, tot);
		add(fv, tot);
	}

	Rep(i, 1, tot + 1) {
		if(F[i] == i) {
			DFS1(i, 0);
			DFS2(i, i);
		}
	}

}



int main(void) {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr), std::cout.tie(nullptr);
    
    std::cin >> n >> m;
    sz.resize(2 * n + 1);
    fa.resize(2 * n + 1);
    h.resize(2 * n + 1, -1);
    F.resize(2 * n + 1);
    dep.resize(2 * n + 1, 0);
    son.resize(2 * n + 1, 0);
    top.resize(2 * n + 1);
    cost.resize(2 * n + 1, -1);


    rep(i, m) {
    	int a, b, c;
    	std::cin >> a >> b >> c;
    	adj.push_back({a, b, c});
    }

    KruskalBuildTree();
    
    std::cin >> q;

    while(q--) {
    	int x, y;
    	std::cin >> x >> y;
    	std::cout << cost[LCA(x, y)] << '\n';
    }

    return 0;
}

K r u s k a l + L C A ( 倍增 S T 表 ) Kruskal+ LCA(倍增ST表) Kruskal+LCA(倍增ST)
AC code:

#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <algorithm>
#include <cmath>

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> PII;

#define rep(i, n) for(int i = 0; i < n; i++)
#define Rep(i, len, n) for(int i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000

const int INF = std::numeric_limits<int>::max(); 

struct edge {
    int u, v, w;
    bool operator> (const edge& other) const{
        return w > other.w;
    }
};

int n, m, q, LOG;
std::vector<edge> e;
std::vector<int> dep, fa, sz;
std::vector<std::vector<int>> F, num;
std::vector<std::vector<PII>> adj;

void DFS(int u, int father, int val) {
    dep[u] = dep[father] + 1;
    F[u][0] = father;
    num[u][0] = val;

    for(int i = 1; i <= log2(n); i++) {
        F[u][i] = F[F[u][i - 1]][i - 1];
        num[u][i] = std::min(num[u][i - 1], num[F[u][i - 1]][i - 1]);
    }
    for(const auto& [v, w] : adj[u]) if(v != father) DFS(v, u, w);
}

inline int LCA(int u, int v) {
    int res = INF;
    if(dep[u] < dep[v]) std::swap(u, v);
    for(int i = log2(n); i >= 0; i--) {
        if(dep[F[u][i]] >= dep[v]) {
            res = std::min(res, num[u][i]); 
            u = F[u][i];
        }
    }

    if(u == v) return res;
    for(int i = log2(n); i >= 0; i--) {
        if(F[u][i] != F[v][i]) {
            res = std::min(res, std::min(num[u][i], num[v][i]));
            u = F[u][i], v = F[v][i];
        }
    }
    res = std::min(res, std::min(num[u][0], num[v][0]));
    return res;
}

int Findest(int x) {
    return x == fa[x] ? x : fa[x] = Findest(fa[x]);
} 

inline void Kruskal(int x, int y, int w) {
    int fx = Findest(x), fy = Findest(y);
    if(fx == fy) return ;
    if(sz[fx] > sz[fy]) std::swap(fx, fy);
    fa[fx] = fy;
    sz[fy] += sz[fx];

    adj[x].push_back({y, w});
    adj[y].push_back({x, w});
} 

int main(void) {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr), std::cout.tie(nullptr);
    
    std::cin >> n >> m;
    LOG = log2(n);
    F.resize(n + 1, std::vector<int>(LOG, 0));
    num.resize(n + 1, std::vector<int>(LOG, 0));
    adj.resize(n + 1);
    dep.resize(n + 1, 0);
    fa.resize(n + 1);
    sz.resize(n + 1, 1);

    Rep(i, 1, n + 1) fa[i] = i;
    
    rep(i, m) {
        int a, b, c;
        std::cin >> a >> b >> c;
        e.push_back({a, b, c});
    }
    
    std::sort(e.begin(), e.end(), std::greater<edge>());
    rep(i, m) Kruskal(e[i].u, e[i].v, e[i].w);
    
    for(int i = 1; i <= n; i++) if(fa[i] == i) DFS(i, 0, INF);

    std::cin >> q;
    while(q--) {
        int x, y;
        std::cin >> x >> y;
        if(Findest(x) != Findest(y)) {
            std::cout << -1 << std::endl;
        } else {
            std::cout << LCA(x, y) << std::endl;
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值