山大软件23年下半年数字图像处理

图片丢失太多搞不过来了,总之结合老师屁屁踢复习,over 

从零开始的DIP生活😅😅😅

  • 可能的一些情报:

    分割好像不考? lxm说来的人太少了不给你们考了

    直方图貌似挺重要

    Untitled

  • 一些question

    • 图像修复和图像增强有什么异同?

      相同之处:改进输入图像的视觉质量

      不同之处:

      • 图像增强是主观的,其借助人的视觉系统特性,以取得较好的视觉效果 (不考虑退化原因)
      • 图像恢复是客观的,其根据相关的退化模型知识重建恢复原始的图像 (考虑退化的原因)
    • 灰度插值的作用?双线性插值、最近邻插值、双三次插值的优缺点

      灰度插值是一种在数字图像处理中常用的技术,主要用于图像的放大、缩小、旋转等操作中,用于计算新像素位置的灰度值。下面是几种常见灰度插值方法的优缺点:

      1. 最近邻插值(Nearest Neighbor Interpolation)
        • 优点:简单快速,计算量小。在处理速度要求高且图像质量要求不高的情况下非常有效。
        • 缺点:图像质量较差,容易产生锯齿状边缘,不适合高质量图像处理。
      2. 双线性插值(Bilinear Interpolation)
        • 优点:比最近邻插值效果好,可以得到比较平滑的图像边缘,适合于大多数图像放大的场合。
        • 缺点:相比最近邻插值,计算复杂度和计算量较大。在某些情况下可能会出现模糊。
      3. 双三次插值(Bicubic Interpolation)
        • 优点:图像质量最好,可以得到较为平滑且边缘清晰的图像,特别适用于高质量的图像放大。
        • 缺点:计算复杂度和计算量最大,处理速度较慢,不适合处理速度要求较高的应用。
    • 理想高通滤波器为什么会产生振铃现象以及巴特沃夫滤波器为什么不产生振铃现象

      理想高通滤波器和巴特沃斯高通滤波器在处理图像时的行为不同,主要由它们的频率响应特性决定。这些特性影响了它们对图像的影响,尤其是在边缘处。

      理想高通滤波器

      理想高通滤波器有一个非常尖锐的切换点:在某个特定频率以下,所有频率成分都被完全阻塞,而在该频率以上,则所有频率成分都完全通过。这种切换是不连续的,其频率响应函数是矩形的。

      振铃现象产生的原因:

      1. 吉布斯现象:理想高通滤波器的突然切换在时域中产生振荡,这是因为理想滤波器的脉冲响应在时域中是一个正弦波序列,其无限延伸并没有平滑的过渡。这种现象被称为吉布斯现象,它导致了所谓的“振铃”效应。
      2. 高频突变:理想滤波器在切换点附近引入了高频突变,这些突变在图像中表现为伪影或振铃效应,特别是在边缘附近。

      巴特沃斯高通滤波器

      巴特沃斯高通滤波器采用的是更平滑的过渡。它不是在某个频率点突然切换,而是渐进地减弱低于某个频率的信号。

      为什么不产生振铃现象:

      1. 平滑过渡:巴特沃斯滤波器的频率响应更加平滑,没有理想滤波器那样的尖锐切换。这意味着其时域的脉冲响应更加平滑,没有引入明显的振铃现象。
      2. 没有高频突变:由于巴特沃斯滤波器的渐进式切换,它不会在图像中引入高频突变,因此可以更自然地保持图像的边缘和细节,减少振铃和伪影。

      总结来说,理想高通滤波器由于其不连续的频率响应,在图像处理中容易引起振铃现象。而巴特沃斯高通滤波器由于其平滑的过渡,可以避免这种问题,从而在图像处理中提供更自然的结果。

    • 图像数字化的两个步骤是什么?数字化的参数对图像质量有什么影响?

      图像数字化是将模拟图像转换为数字形式的过程,以便于计算机处理和分析。这个过程主要包含两个关键步骤:采样(Sampling)和量化(Quantization)。每个步骤对最终图像的质量都有重要影响。

      1. 采样 (Sampling)

      采样是指在空间上将连续的图像转换为离散像素的过程。这涉及到决定每个像素在图像中所占据的实际区域大小。

      • 参数:采样率或分辨率,通常用每英寸像素数(PPI)或图像的总像素数(例如,1920x1080)表示。
      • 对图像质量的影响
        • 高采样率:提供更多的细节,图像更清晰,但文件大小会增加。
        • 低采样率:可能导致细节丢失和走样(例如,锯齿状的边缘),但文件大小较小。

      2. 量化 (Quantization)

      量化是指将每个采样点的亮度或颜色强度转换为实际的数值。这涉及到决定每个像素可以表示的颜色数。

      • 参数:颜色深度或位深度,通常用位数表示,如8位、16位、24位等。
      • 对图像质量的影响
        • 高位深度:能够表示更多的颜色和更精细的亮度变化,导致图像质量更高,但同样增加了文件大小。
        • 低位深度:减少了可表示的颜色数,可能导致颜色带状效应或色彩失真,但文件大小更小。

      总结

      图像的数字化质量受到采样率和量化精度的直接影响。高采样率和高位深度提供了更高的图像质量,但也导致了更大的文件大小。在选择这些参数时,通常需要在图像质量和文件大小之间找到一个平衡点。

    • 证明高通滤波器

      简单来讲就是突出$u \to 0$时$H(u)$变化小,$u \to 1$时$H(u)$变化大,从而起到滤波器加强高频减弱低频的效果

    • 一副图像存储在内存当中时记录哪些信息

      1. 像素数据
        • 每个像素的颜色信息,对于彩色图像,通常以RGB(红绿蓝)颜色模型存储,每个颜色通道可能有不同的位深度(如8位、16位等)。
        • 对于灰度图像,每个像素可能只存储一个亮度值。
      2. 图像尺寸
        • 图像的宽度和高度,以像素为单位。
      3. 颜色深度(位深度)
        • 每个颜色通道的位数,它决定了每个通道可以表示的颜色范围。
      4. 颜色空间或颜色模型
        • 图像是使用RGB、CMYK、YCbCr等颜色模型存储的。
      5. 元数据
        • 包括图像的创建日期、作者信息、版权信息、相机设置(对于照片)、GPS坐标等。
      6. 压缩类型
        • 图像是否被压缩,以及使用了哪种压缩算法(如JPEG、PNG、GIF)。
      7. 分辨率
        • 图像在物理尺寸上的分辨率,通常以每英寸像素(PPI)表示。
      8. 色彩配置文件
        • ICC色彩配置文件信息,用于确保在不同设备间颜色的准确性。
      9. 透明度信息
        • 对于支持透明度的格式(如PNG),透明度信息也会被存储。
      10. 层和通道信息
        • 对于像Photoshop这样的图像编辑软件保存的文件,可能会包含多个层和通道的信息。
      11. 格式特定信息
        • 某些图像格式可能包含特定于格式的其他信息,例如GIF动画的帧延迟时间或TIFF文件的页码。
    • 分析逆滤波复变变态性的原因,给出解决策略

      逆滤波是图像处理中一种常用的去模糊技术,尤其是在图像去卷积领域。逆滤波的基本原理是利用模糊图像和已知的模糊函数(或点扩散函数,PSF)来重建原始图像。在频率域内,逆滤波通过除以模糊函数的傅立叶变换来实现。

      变态性的原因

      逆滤波的变态性(或不稳定性)通常出现在以下几种情况:

      1. 噪声的放大:在模糊函数的傅立叶变换中,某些频率成分可能接近于零。当这些成分在逆滤波过程中被除以时,即使是微小的噪声也会被极大地放大,导致重建图像中出现严重的噪声干扰。
      2. 不完整的PSF信息:如果模糊函数(PSF)未知或不准确,那么逆滤波的结果可能会完全错误。
      3. 有限精度的计算:在实际的数字计算中,有限的精度和舍入误差可能会导致逆滤波过程中的问题,特别是当处理接近零的频率分量时。

      解决策略

      为了解决逆滤波的变态性,可以采取以下策略:

      1. 加入正则化:引入正则化项可以减少噪声的放大。例如,Wiener滤波就是一种考虑了噪声干扰的逆滤波方法,它通过一个优化准则来权衡逆滤波和噪声放大。
      2. 使用约束最小二乘(CLS)滤波:CLS滤波是一种在逆滤波的基础上加入了平滑约束的方法,这有助于控制图像的变异性,减少噪声的影响。
      3. 使用盲去卷积:当PSF未知时,可以使用盲去卷积技术,该技术不仅估计原始图像,同时也估计PSF。
      4. 截断频率响应:为了避免除以接近零的频率分量,可以将这些分量设置为一个小的阈值,从而避免噪声的放大。
      5. 迭代方法:使用迭代方法来逐步改进图像,例如Lucy-Richardson去卷积,可以提高结果的稳定性。
      6. 空间域滤波:有时在空间域进行操作而不是频率域可以提供更稳定的结果,尤其是当PSF局限在较小的区域时。

      通过这些策略,可以在很大程度上克服逆滤波的不稳定性,得到更好的去模糊结果。在实际应用中,通常需要根据具体情况和可用数据选择最适合的方法。

    • 直方图均衡化流程

      1. 列出原始图像灰度级
      2. 列出原始直方图
      3. 计算原始累计直方图
      4. 乘灰度级
      5. 映射
      6. 确定映射对应关系
      7. 变换后直方图

第一章 Introduction

第二章 Fundamentals基础

  • 2-1 Image representation 图像表示

    一幅图像可以定义为一个二维函数$f(x,y)$,其中x和y是空间坐标,任意一对空间坐标$(x,y)$处的幅值f称为图像在该点的强度或灰度。当x,y和灰度值f都是有限的离散量时,我们称图像为数字图像。

    $f(x,y)$定义在二维空间,$x,y,f(x,y)$只取离散值,由有限元素组成。每个元素被称为像素**(pixel)**

    离散灰度基数:$L=2^k$

    存储一幅图像所需的位数:$b=M\times N \times k$

    Untitled

    Untitled

    <aside> 💡 我们在此认为图像是2维空间上的离散元素表示(当然作为多通道表示颜色和透明度它也可以被理解为是三维的)

    </aside>

  • 2-2 Image in Memory 图像存储

    图像存储涉及两种常见的方法:交叉存储和顺序存储。

    1. 交叉存储(Interleaved Storage):在交叉存储中,图像的像素值按照通道顺序交错存储。通常,图像的每个像素由多个通道组成,如红色(R)、绿色(G)和蓝色(B)通道。在交叉存储中,首先存储所有像素的红色通道值,然后是绿色通道值,最后是蓝色通道值。这种存储方式使得读取像素时可以按照像素的物理顺序连续读取,适用于许多图像处理算法和显示设备。

      <aside> 💡 把[B,G,R]理解成一个元素的话就是一张彩色的图(在BGR颜色空间里的图像)

      </aside>

    2. 顺序存储(Sequential Storage):在顺序存储中,图像的像素值按照像素的顺序依次存储。例如,从图像的左上角开始,按照行优先或列优先的顺序将像素值存储在内存中。这种存储方式保持了像素的空间关系,但在像素值的读取过程中需要进行多次跳跃和间隔,可能不如交叉存储效率高。

      <aside> 💡 把[B]理解成一个元素的话就是顺序存放了分别代表B,G,R三种颜色的三张灰度图像

      </aside>

    Untitled

    • 尺寸(分辨率,dpi,宽度*高度,像素数量)
    • 色彩空间(RGB,CMYK,YUV,Lab)
    • 通道(1,2,3,4 gray & color)
    • 深度(每个通道的位数)
    • 步长(用于数据对齐;使每行从地址开始、地址为4,8,或16的倍数)
    • 坐标系:左手或右手(原点位置)

    邻居Neighborhood

    最常见的为4-邻域和8-邻域

    一幅8位单通道图像中,某像素的内存空间为p,图像的步长为step(每行所占字节数为step),其八邻域的内存地址为:

    Untitled

  • 2-3 sampling and quantization 图片的采样与量化

    一幅连续图像$f$(其x,y坐标为连续的,其幅度也为连续的),把它转化为数字图像。

    • 对坐标值进行数字化称为采样
    • 对幅度值进行数字化称为量化

    Untitled

    空间采样决定图像的分辨率(决定什么等级的细节可以被看到)

    dpi(dot per inch)

    量化决定了强度级别数量(对比度变化的“平滑程度”)

    • 较细的量化会防止“虚拟轮廓”(人工边缘)
    • 较粗的轮廓允许对图像进项压缩
  • 2-4 Geometric operation 几何变换

    几何运算可以改变图像中各物体之间的空间关系,一个集合运算需要两个独立的算法:

    • 空间变换:描述每个像素如何从起始位置“移动”到终止位置(坐标的空间变换
    • 灰度值插值的算法:在一般情况,输入图像的位置坐标(x,y)为整数,而输出图像位置坐标为非整数(空间变换后像素赋灰度值

    (1)空间变换:

    要求保持图像中曲线型特征的连续性和各物体的连通性

    Untitled

    平移,放大、缩小,旋转,仿射变换等

    (2)灰度级插值:

    在输入图像$f(x,y)$灰度值仅在整数位置$(x,y)$被定义,$g(x,y)$的灰度值一般由处在非整数坐标上的$f(x,y)$的值来确定。

    如果把几何运算看成是一个从f到g的映射,则f中的一个像素会映射到g中的几个像素之间的位置

    Untitled

    Resampling(重采样):基于临近像素点值,计算非整数位置上的颜色值

    • 最近邻:找到最近的源像素点赋它的值

    • 双线性插值

      通过插值得到正方形内任意点的灰度值,方程为:

      $$ f(x,y)=ax+by+cxy+d $$

      从a到d四个系数需要由已知的四个顶点的$f(x,y)$灰度拟合

      Untitled

      Untitled

    • 双三次插值

      太勾八难了,好像还没讲具体实现

      简单说说就是双线性插值用4个相邻点,双三次插值用16个相邻点,还考虑了点之间灰度的变化(也就是要算偏导和全导)公式就不放了,想学自行百度。

    在几何变换中,输出图像像素点坐标可能对应输入图像上几个像素的位置,这个时候就需要通过灰度插值来计算出该输出点的灰度值

    Untitled

  • 2-5 Image Features 图像特征

    (1)区域属性 Region Property:

    区域属性(Region Property)是指在对图像进行区域标记(分割)之后,用于进行区域分析或测量的重要特征。

    1. 周长和面积(Perimeter and Area):周长是区域边界的长度,面积是区域内像素的总数。它们是描述区域大小和形状复杂度的重要属性。Pick's formula是计算面积的一种方法,基于区域内像素数目和边界上的整点数目来估计面积。公式是$A(P) = n_I + {n_B\over 2} -1$,其中$n_I$为全部包含在区域内的像素个数,$n_B$为部分在区域中的像素个数
    2. 中心点、半径和直径(Center, Radius, and Diameter):中心点是区域的质心或中心位置,半径是从中心点到区域边界的距离,直径是通过区域中心的最大距离。这些属性有助于描述区域的位置和尺寸。
    3. 质心、矩和方向(Centroid, Moments, and Orientation):质心是区域的平均位置,矩是用于描述区域形状和分布的数学特征,方向是区域的主轴方向。质心、矩和方向属性用于分析区域的形状和定位。
    4. 极值点和曲率(Extreme Points and Curvature):极值点是区域边界上的最高点和最低点,曲率是描述区域边界曲线弯曲程度的属性。它们可以用于分析区域的轮廓特征和形状变化。
    5. 强度属性(Intensity Properties):强度属性涉及区域内像素的灰度值统计特征,如平均灰度、标准差、最小值和最大值等。这些属性有助于描述区域的亮度变化和纹理特征。

第三章 Enhancement (基于空域的)灰度图像增强方法

Untitled

基础:

空域方法(Spatial Domain Methods)是图像处理中的一种方法,通过对图像中每个像素及其邻域进行操作,从而得到输出图像。

$$ g(x,y)=T[f(x,y)] $$

T是在点$(x,y)$的一个邻域上定义的针对f的算子

当邻域为$1 \times 1$(即只考虑当前像素本身)时,输出图像的像素值仅依赖于输入图像在相同位置的像素值,此时转换函数T成为一个点处理函数。此时的T也被称为灰度变换函数可以表示为:

$$ s = T(r) $$

其中:

  • $r$表示输入图像$f$在位置$(x,y)$处的灰度级别
  • $s$表示输出图像$g$在位置$(x,y)$处的灰度级别

空域处理是指通过预定义的邻域中$f$的值来确定$g$在$(x,y)$处的值。也就是说,输出图像中的每个像素值由其相应邻域内输入图像像素的值决定。

空域方法可以应用于许多图像处理任务,例如图像增强、滤波、边缘检测等。通过选择适当的空域操作和定义合适的邻域,可以实现对图像的局部或全局特征的增强、提取或改变。这种方法简单直观,并且易于理解和实现。

(一)点处理

  • 概念介绍

    1.像素邻域:

    • 邻接:对两个像素p和q来说,如果q在p的邻域中,则称p和q满足邻接关系
    • 连接:p和q邻接且灰度值均满足某个特定的相似准则
    • 连通:不(直接)邻接,但均在另一个像素的相同邻域中,且这3个像素的灰度值均满足某个特定的相似准则

    2.像素间距离:

    • 欧式距离:$D_E(p,q)=[(x-s)^2+(y-t)^2]^{1/2}$
    • 城区距离:$D_E(p,q)=|x-s|+|y-t|$
    • 棋盘距离:$D_E(p,q)=max(|x-s|,|y-t|)$

    3.灰度映射原理:

    基于输入图像的每个像素灰度级别进行映射,将其映射到输出图像的新值

    映射函数:$t=T(S)$

    Untitled

  • (1)灰度级变换

    Untitled

    1.灰度变换(线性函数,对数函数,幂律函数)

    图像反转:

    $$ g(x,y)=255-f(x,y)\\更一般形式s=L-1-r $$

    其中灰度级在区间$[0,L-1]$

    可用于增强图像暗色区域中的白色或灰色细节,暗色区域的尺寸很大时这种增强效果更好

    对数变换:

    $$ s=c\log(1+r)\ \ c为常数,r\ge0 $$

    幂律变换:

    $$ s=cr^\gamma \ \ c与\gamma是正常数 $$

    2.对比度变换

    分段线性变换函数进行对比度拉伸:

    Untitled

    量化&阈值处理:

    Untitled

    3.灰度级分层(突出图像中特殊的灰度区间):

    Untitled

    Untitled

    4.比特平面分层:

    突出特殊比特对整个图像外观的贡献;8比特图像可以视为8个1比特平面组成,其中平面1包含图像中所有像素的最低有效比特。

    Untitled

    Untitled

    越高的平面包含更多的有效信息,尤其是最高的4个平面包含大量视觉意义的据。由此得出:存储4个最高有效比特平面,就能以可接受的细节和色调重建圆画面,一半存储。

  • (2)直方图处理 Histogram Processing

    Untitled

    图像直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素,即统计一幅图某个亮度像素数量(概率)。

    图像直方图由于其计算代价较小,且具有图像平移、旋转、缩放不变性等众多优点,广泛地应用于图像处理的各个领域,特别是灰度图像的阈值分割、基于颜色的图像检索以及图像分类。

    图像的直方图就是像素值出现的总的频数,其公式如下:

    $ℎ(r_k)=n_k, k=0,1,2,...L−1$

    一般情况下,通常将其除以总的像素数,通过概率的形式进行表述:

    $p(r_k)=\frac{ℎ(r_k)}{MN} =\frac{n_k}{MN}$

    1.直方图均衡

    直方图均衡化的基本思想是把原始图的直方图变换为在整个灰度范围内均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果。

    对于灰度级为离散的数字图像,用频率来代替概率,则变换函数$T(r_k)$的离散形式可以表示为:

    Untitled

    Untitled

    Untitled

    2.直方图匹配(规定化)

    用户可指定规定化函数来得到特殊的增强功能

    将离散直方图规定化的过程:

    • 计算输入图像的直方图$p_r(r)$,进行直方图均衡化得到值$s_k$
    • $G(z_q)=(L-1)\sum\limits _{i=0}^q {p_z(z_i)}$计算函数$G(z_q)$的所有值,其中$p_z(z_i)$为规定直方图的值。将$z=G(z_q)$四舍五入到区间[0,L-1]区间,存储成查询表a
    • 存储从s到z的映射:($G(z_q)$近似$s_k$值,找到对应的z_q和s_k映射)
    • 将每个均衡化后的像素$s_k$值映射到直方图规定化图像中值为$z_q$的对应像素,形成直方图规定化后的图像

    Untitled

    3.局部直方图处理

    • 目的:增强图像中几个小区域的细节。
    • 解决方法:设计基于像素领域的灰度分布的变换函数。

    定义一个邻域,并将其中心在水平方向或者垂直方向上从一个像素移动到另一个像素。在每一个位置,计算邻域中的各点的直方图,得到直方图均衡化或直方图规定化的变换函数。这个函数用于映射邻域中心像素点灰度。然后将邻域的中心移到一个相邻像素位置,并重复该过程。

    定义一个正方形(或矩形)邻域,并将该区域的中心从像素移动到像素
    对于每个像素:
    计算邻域内点的直方图。
    获取直方图均衡化/规定化函数。
    映射邻域中心像素的灰度级别。
    

    重叠区域、非重叠区域(避免“块状”效应)

    Untitled

    4.使用直方图统计量增强图像

    定义一个正方形(或矩形)邻域,并将该区域的中心从像素移动到像素。

    对于每个像素:
    
    - 计算以(x,y)为中心的子图像中灰度级别的平均值(mSxy)和各种值(σSxy)。
    - 如果 mSxy ∈ [0,k0MG] 且 σSxy ∈ [k1DG,k2DG],则 g(x,y) = E·f(x,y);
    - 否则,g(x,y) = f(x,y)。
    其中:
    - MG:全局均值
    - DG:全局标准差
    - E,k0,k1,k2:参数
    

    这段代码描述了对每个像素进行处理的步骤。首先,对于每个像素,计算以其为中心的子图像的灰度级别的平均值和各种值。然后,根据一些条件判断,如果平均值和各种值满足特定的范围,则通过乘以参数E来进行增强,否则保持原像素值不变。

    这个方法的目的是根据局部区域的灰度统计特征来决定是否进行增强操作。通过比较局部平均值和标准差与全局统计参数的范围,可以选择性地对图像进行增强,以达到更好的图像质量和视觉效果。

    Untitled

(二)空域处理

空间域滤波器:

滤波盒定义:一个像素值被替换为其邻域内所有像素值的线性组合。

  • 线性滤波器

    Untitled

  • 非线性滤波器

  • (1)算术操作Arithmetic Operation

    Untitled

    可分离滤波核:

    若二维滤波核$G(x,y)$可写成一维函数$G_1(x)和G_2(y)$的乘积,则它是可分离的。

    二维高斯函数卷积可分两步进行:首先将图像与一维高斯函数卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积。因此,二维高斯函数的计算量随模板宽度成线性增长而不是成平方增长,所以较大尺寸的高斯滤波器可以得以有效的实现。

  • (2)空间滤波 Spatial Filtering

    sobel算子Sobel算子和Prewitt算子都是加权平均,但是Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。
    Prewitt算子对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。
    Roberts算子边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分割。
    laplacian算子二阶微分算子。其具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。但是,其对噪声比较敏感,所以,图像一般先经过平滑处理,因为平滑处理也是用模板进行的,所以,通常的分割算法都是把Laplacian算子和平滑算子结合起来生成一个新的模板。

    一阶二阶区分:

    • 一阶导数更关心缓慢变化的区域
    • 二阶微分关心的是图像灰度的突变而不强调灰度缓慢变化的区域,对边缘的定位能力更强。

    线性滤波器:

    • 低通滤波器(权值大于0,sum=1)边缘定位准,但是对噪声敏感。

      • 盒式滤波器:最简单的可分离低通滤波器

        其系数的值相同(通常为1)

      • 低通高斯滤波器核:二维空间高斯函数是等高线从中心成正态分布的同心圆

        Untitled

        大概在$3\sigma$距离之外的像素都不起作用

        参数:

        • 滤波盒大小:滤波盒大小决定了平滑效果,较大的滤波盒将考虑更多的像素,产生更强烈的平滑效果;

        • 标准差$\sigma$:较大的标准差将导致更广泛的权重分布,产生更平滑的结果;较小的标准差将导致权重更为集中,保留更多细节

          Untitled

    • 高通滤波器(sum=0)

      滤波器应该在中心附近具有正的系数,并在外部边缘具有负的系数,并且滤波器的所有系数之和应为零。经常用于边缘提取与边缘检测

      • Separability可分离性

        对于一个二维滤波操作,如果滤波核具有行列可分离性可以把二维的卷积操作分解成依次进行行和列的滤波操作。(比如高斯滤波就可以这么加速)

        二维高斯函数卷积可分两步进行:首先将图像与一维高斯函数卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积。因此,二维高斯函数的计算量随模板宽度成线性增长而不是成平方增长,所以较大尺寸的高斯滤波器可以得以有效的实现。

      • 一阶导数:梯度

        梯度是一个向量,表示函数在每一个点的变化率和方向。对于图像,梯度为由两个分量组成的向量,分别表示水平和垂直方向上的变化率

        梯度常用于计算图像的边缘和纹理等特征。通过计算图像的梯度,可以获取每个像素点的变化强度和方向信息。这样的特征可以用于边缘检测、角点检测、图像对齐、图像增强等应用。

        一阶导数:

        $$ f^{'}(x) = f(x+1)-f(x) $$

        • 恒定灰度区域一阶导数为0
        • 灰度台阶或斜坡开始处导数非零
        • 灰度斜坡上导数非零

        二阶导数:

        $$ f^{''}(x) = f(x+1)+ f(x-1)-2f(x) $$

        • 恒定灰度区域导数为0
        • 灰度台阶或斜坡的开始处或结束处的导数非零
        • 灰色斜坡上的二阶导数为零

        Untitled

        对比总结:

        • 一阶导数在图像中产生较粗的边缘
        • 一阶导数对灰度级跃变有更强的响应
        • 二阶导数对细节有更强的响应
        • 二阶导数在灰度级跃变处产生双重响应(起始点和终止点)
        • 二阶导数对线条的响应比对灰度级跃变强,对点的响应比对线条强

        图像f在坐标$(x,y)$处的梯度定义为二维列向量

        Untitled

        向量的幅度表述为$M(x,y)$:

        在某些实现中,可以用绝对值近似平分和的平方根

        Untitled

        对下面三个算子,均在$3\times3$的滤波核内进行考虑

        Untitled

        • Sobel算子

          $$ G_y = (z_7+2z_8+z_9) - (z_1+2z_2+z_3) \\ G_x = (z_3+2z_6+z_9) - (z_1+2z_4+z_7) \\ \nabla f \simeq |(z_7+2z_8+z_9) - (z_1+2z_2+z_3)|\\+|(z_3+2z_6+z_9) - (z_1+2z_4+z_7) | $$

          Untitled

        • Prewitt算子

          $$ G_y = (z_7+z_8+z_9) - (z_1+z_2+z_3) \\ G_x = (z_3+z_6+z_9) - (z_1+z_4+z_7) \\ \nabla f \simeq |(z_7+z_8+z_9) - (z_1+z_2+z_3)|\\+|(z_3+z_6+z_9) - (z_1+z_4+z_7) | $$

          Untitled

        • Roberts算子

          $$ G_x = (z_9 - z_5) \\ G_y = (z_8 - z_6) \\ \nabla f \simeq |z_9 - z_5|+|z_8 - z_6| $$

          Untitled

      • 二阶导数:4邻域和8邻域Laplacian算子

        拉普拉斯(线性算子):

        Untitled

        x,y方向上:

        Untitled

        两个变量的离散拉普拉斯:

        $$ \nabla ^2f(x,y)=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y) $$

        Untitled

        理论为:对二维图像的梯度进行计算

        $$ \nabla^2f=[f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)]-4f(x,y) $$

    • 带通滤波器

    非线性滤波器:(去噪时再整理)

    • 中值滤波器
    • 最大值滤波器
    • 最小值滤波器

第四章 Frequency 频率图像增强

(一)傅里叶变换

任何周期函数都可以表示为不同频率的正弦函数和

欧拉公式:$e^{j\theta}=cos\theta+jsin\theta$

  • 傅里叶级数

    周期为T的连续变量t的周期函数f(t),可表示为乘以适当系数的正弦函数和余弦函数之和

    $$ f(t)=\sum {n=+\infty }^{\infty}c_ne^{j\frac{2\pi n}{T}t}\\ c_n=\frac{1}{T} \int{T/2}^{-T/2}f(t)e^{j\frac{2\pi n}{T}t} dt,n为整数 $$

    傅里叶级数所做的是:

    • 把$\{ 1,\sin t,\cos t,\sin tx,\cos tx,…,\}$看成空间中的一组基(这组基之间相互正交(三角函数系正交),线性无关,乘积在区间$[-\pi,\pi]$上的积分为0
    • 然后展开成这组基的线性组合 $f(t)$

    傅里叶级数可以处理周期函数问题,非周期函数则由傅里叶变换解决

直观理解:周期函数可以根据傅里叶级数画出频域图,当周期函数周期变大,频域间隔子区间会越来越小,趋近于0的时候(即T为无穷大时),求和公式可以被写作积分的形式,同样我们可以基于这个思想来给出从傅里叶级数到傅里叶变换(具体咋弄的没看明白)

  • 连续傅里叶变换:

    一个简单的看法就是我们把非周期函数的周期看成无穷大。

    $$ F(\mu)=\int_{-\infty}^{+\infty}f(t)e^{-j2\pi \mu t}dt\\ 其中 e^{-j2\pi \mu t}=\cos{(2\pi\mu t)}-j\sin{(2\pi \mu t)} $$

    其中正弦函数的频率是由$\mu$决定的

  • 离散傅里叶变换:

    对一段有限长的离散信号,找出它含有的各个频率的正弦波分量。(这是句大家都知道的废话)

  • 1维离散傅里叶变换(DFT):

    $$ F(u)=\frac{1}{M}\sum_{x=0}^{M-1}f(x)e^{-2j\pi u x/M } $$

    我们要从$\mu=0$到$\mu=1/\Delta T$的一个周期内等间隔取M个样本即为在

    $$ \mu = \frac{u}{M\Delta T},u=0,1,2,…M-1 $$

    <aside> 💡 个人理解:傅里叶变换在广义来说,是时空域到频域的转变。也就是坐标系的转变,如何用新的坐标系来构建。F(u)即为每一个基对应的系数,u不同的值对应不同的频率。

    </aside>

    $F(u)$就是傅里叶变换,得到的就是频域图,它在$u_0$的值$F(u_0)$表示$f(x)$在$u_0$频率对应的正交基上的系数。

    逆傅里叶变换:

    $$ f(x)=\sum_{u=0}^{M-1}F(u)e^{2j\pi u x/M } $$

    Untitled

  • 2维离散傅里叶变换(DFT):

    $$ F(u,v)=\frac{1}{MN}\sum^{M-1}{x=0}\sum^{N-1}{y=0}f(x,y)e^{-j2\pi (\frac{ux}{M}+\frac{vy}{N})} $$

    逆傅里叶变换:

    $$ f(x,y)=\sum^{M-1}{u=0}\sum^{N-1}{v=0}F(u,v)e^{j2\pi (\frac{ux}{M}+\frac{vy}{N})} $$

    二维傅里叶变换的性质(只整理其列举的性质):

    • 平移:f(x,y)的平移不影响傅里叶变换的幅度

      $f(x,y)$乘以指数项,再进行傅里叶变换,则将频域原点移至$(u_0,v_0)$

      $$ f(x,y)e^{j2\pi ({u_0x\over M}+{v_0y\over N})}\Longleftrightarrow F(u-u_0,v-v_0) $$

      同样,$F(u,v)$乘以指数项,再进行傅里叶逆变换,则将空域的原点移至$(x_0,y_0)$

      $$ F(u,v)e^{-j2\pi ({x_0u\over M}+{y_0v\over N})}\Longleftrightarrow f(x-x_0,y-y_0) $$

    • 分配率与缩放

      傅里叶变换对加法有分配率,但对乘法没有

      $$ \image\{ f_1(x,y)+f_2(x,y)\}=\image\{ f_1(x,y)\}+\image\{f_2(x,y) \} $$

      $$ af(x,y)\Longleftrightarrow aF(u,v) $$

      对$f(x,y)$幅度的缩放导致$F(u,v)$幅度的缩放

      $$ f(ax,by)\Longleftrightarrow \frac{1}{|ab|}F(\frac ua,\frac vb) $$

      对$f(x,y)$空间尺度的缩放导致$F(u,v)$频率尺度的相反缩放

      对$f(x,y)$的收缩$(a>1,b>1)$,不仅导致$F(u,v)$膨胀,而且会使$F(u,v)$的幅度降低。

    • 旋转

    • 周期性与共轭对称性

    • 可分离性

    • 卷积和相关性

    空间间隔和频率间隔的关系

    假设对连续函数$f(t,z)$取样生成一副数字图像$f(x,y)$,它由分别在t方向和z方向所取得$M×N$个样本组成。令$\Delta T和\Delta Z$表示样本间的间隔。于是频率域对应的离散变量间的间隔分别为:

    $$ \Delta u=\frac{1}{M\Delta T} \ \ \ \ \ \Delta v =\frac{1}{N\Delta Z} $$

    傅里叶谱:R和I分别代表实部和虚部

    $$ |F(u,v)|=[R^2(u,v)+I^2(u,v)]^{\frac12} $$

    相位谱:

    $$ \phi(u,v)=\arctan \begin{bmatrix} \frac{I(u,v)}{R(u,v)}\end{bmatrix} $$

    移中处理:将$F(0,0)$移动到$F(\frac M2,\frac N2)$

    $$ \image [f(x,y)(-1)^{x+y}]=F(u-\frac M2,v-\frac N2) $$

    • 从频谱图(即图像梯度的分布图)可直观的看出图像的能量分布
      • 如果频谱图中暗的点数多,那么实际图像是比较柔和的
      • 如果频谱图中亮的点数多,那么实际图像一定是尖锐的、边界分明且边界两边像素差异较大的。
    • 移中的好处:可清晰地看出图像频率分布,更加直观、更符合周期性的原理:可分离出有周期性规律的干扰信号,比如正弦干扰

    Untitled

    傅里叶谱的性质:

    • $F(0,0)$是整个图像的平均灰度,也即最低频率
    • $F(u,v)$在靠近原点处包含低频信息(代表的是灰度变化缓慢的光滑区域)
    • 距离原点越远,其频率越大,包含大量高频信息(代表的是灰度变化剧烈的区域如边缘)
    • 高亮度表示频率特征明显
    • 频谱图中心明显的频率变换方向与原图像中地物方向垂直

    频率上滤波过程:

    1. 对输入图像乘以$(-1)^{ (x+y)}$以对图像进行移中
    2. 对1的结果进行二维离散傅立叶变换(DFT),计算$F(u,v)$
    3. 对$F(u,v)$乘上滤波函数$H(u,v)$
    4. 对3的结果进行离散傅立叶逆变换
    5. 取4的结果的实部
    6. 对5的结果乘上$(-1) ^{(x+y)}$获得空域的滤波后图像

    Untitled

  • 相应的实数基和虚数基

    仅对于二维傅里叶函数来说:

    基函数:

    $$ e^{j2\pi ({ux\over M}+{vy\over N})} $$

    实数基:

    $$ \cos(2\pi (\frac{ux}{M}+\frac{vy}{N})) $$

    虚数基:

    $$ \sin(2\pi (\frac{ux}{M}+\frac{vy}{N})) $$

    注意$u=0,1,2,……,M-1 \ \ and\ \ v=0,1,2,……,N-1$

    Untitled

  • 空间域和频率域滤波之间对应的关系

    空域和频域中的滤波器形成傅里叶变换对,即给定频域中的滤波器,我们可以通过对其进行傅里叶逆变换来获得空域中的相应滤波器。

    Untitled

    卷积理论为频率滤波的基础:时域上的卷积等价于频域上的乘积

<aside> 💡 理解: 可以将傅里叶变换视为在空域和频域之间的变换(当然,本来也是) 变换的方式是通过改变基函数 比如二维傅里叶变换就是将空间上的一组正交基函数变换成了频率上的一组正交基函数 具体的改变就是通过乘上一个指数正交函数对基进行变换

</aside>

(二)低通滤波

效果:消除噪声,平滑细节,即削弱高频噪声

平滑:使噪声,细节,伪轮廓效应减少,消除是以牺牲清晰度为代价来获取去噪能力的

  • (1)理想低通滤波器

    • 以截断$D_0$为半径的圆内所有频率都能无损通过
    • 以截断$D_0$为半径的圆外的所有频率分量完全被衰减

    $D(u,v)$为频率平面上的点$(u,v)$到原点的距离

    $(u,v)=(M/2,N/2)$

    $$ H(u,v)= \begin{cases} 1, &\text{D(u,v)$\le$ $D_0$}\\ 0, &\text{$D(u,v)>D_0$} \end{cases}\\ D(u,v)=[(u-u_0)^2+(v-v_0)^2]^{1/2} $$

    Untitled

    理想低通滤波器平滑处理的概率清晰,但在处理过程中会产生较严重的模糊和振铃现象,D0越小,这种现象越严重.

    振铃效应产生的原因:

    将理想低通滤波器转移函数反变换为$h(x,y)$

    Untitled

    相当于将一个点展开,扩展成许多个圆环,即将一个点模糊

    $D_0$较小,$h(x,y)$产生数量少但较宽的同心圆

    $D_0$较大,$h(x,y)$产生数量多但较窄的同心圆

    图像功率的90%位于半径小于5的圆形区域内,这代表着图像中的低频信息主要存在于平滑的区域。另外10%的图像功率则分布在其他区域,代表了图像中的高频信息,主要包括边缘、纹理和噪声

  • (2)巴特沃斯低通滤波器Butterworth

    $$ H(u,v)=\frac{1}{1+[D(u,v)/D_0]^{2n}} $$

    与理想低通滤波器不同,它的通带与阻带之间没有明显的不连续性,有一个平滑的过渡带。

    与理想的低通滤波器相比,其处理的图像模糊程度减少(其尾部包含大量的高频成分),不会出现振铃现象

    Untitled

  • (3)高斯低通滤波器

    $$ H(u,v)=e^{-D^2(u,v)\over 2D_0^2} $$

    Untitled

    反正也没有振铃现象

(三)高通滤波

乐,由低频滤波器取反得到

注意理想高通滤波器同样有振铃现象

$$ H_{HP}(u,v)=1-H_{LP}(u,v) $$

Untitled

第五章 Restoration 图像修复

(一)图像恢复

典型的图像恢复是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像。

  • 图像恢复过程

    1. 找退化原因
    2. 建立退化模型
    3. 反向推演
    4. 恢复图像
  • 与图像增强对比

    Untitled

    相同:改进输入图像的视觉质量

    图像增强借助人的视觉系统特性,以取得较好的视觉效果

    图像恢复根据相关的退化模型和知识重建恢复原始的图像(考虑退化的原因)

如何去描述图像恢复这一问题?

物体图像的理想图像为$f(x,y)$,由于成像系统、采集系统不理想或者成像环境不理想,实际得到的为退化图像$g(x,y)$$\hat{f}(x,y)$,恢复图像为$\^{f}(x,y)$

其中$h(x,y)$为退化模型,$\eta(x,y)$为噪声模型,需要注意的是只有$g(x,y)$是已知的

$$ 空间域:g(x,y)=h(x,y)*f(x,y)+\eta(x,y)\\ 频率域: G(u,v)=H(u,v)F(u,v)+N(u,v) $$

Untitled

(二)噪声模型(ppt上略过内容)

描述噪声一般采用统计意义上的均值和方差

  • 均值:表明了图像中噪声分布的总体强度

  • 方差:表明了图像中噪声分布的强弱

  • 高斯噪声

    电子电路噪声、高温导致的传感器噪声,暗光照导致的传感器噪声

    Untitled

  • 瑞利噪声

    适用于深度图像,不对称的直方图

    Untitled

伽马噪声

指数噪声

均匀噪声

  • 脉冲噪声(椒盐噪声)

    Untitled

(三)只存在噪声的空间域图像复原

算数均值滤波减少了噪声同时模糊图像本身信息
几何均值滤波所达到的平滑度和算数均值相当,但更少丢失图像细节
谐波均值滤波对盐噪声效果更好,但不适用于胡椒噪声,并且善于处理高斯噪声等其他噪声
反谐波均值滤波适用于椒盐噪声,但不能同时消除:q>0胡椒,q<0时盐噪声
  • 均值滤波器

    • 算术均值滤波器

      减少噪声的同时也模糊了图像本身的信息

      其中$S_{xy}$表示中心为$(x,y)$,大小为m×n的矩形图像窗口

      $$ \hat{f}(x,y)=\frac{1}{mn}\sum_{(s,t)\isin S_{xy}}g(s,t) $$

    • 几何均值滤波器

      每个复原像素为子图像区域内所有像素之积的$\frac {1}{mn}$次幂,平滑程度与算术相当,但损失的图像细节更少

      $$ \hat{f}(x,y)={\left[\prod_{(s,t)\isin S_{xy}}g(s,t)\right]}^{1\over mn} $$

    • 谐波均值滤波器

      对盐噪声效果更好,但不适用于胡椒噪声,并且擅长处理高斯噪声等其他噪声

      $$ \hat{f}(x,y)={mn \over \underset {(s,t)\isin S_{xy}}{\sum} \frac{1}{g(s,t)} } $$

    • 反谐波均值滤波器

      式中,Q称为滤波器的阶数。该滤波器适用于降低或消除椒盐噪声。

      Q为正值时,该滤波器消除胡椒噪声;

      Q为负值时,该滤波器消除盐粒噪声;

      注意:不能同时消除这两种噪声。

      Q=0时,化简为算术平均滤波器

      Q=-1时,化简为谐波平均滤波器

      $$ \hat{f}(x,y)=\frac{\underset {(s,t)\isin S_{xy}}{\sum} g(s,t)^{Q+1}}{\underset {(s,t)\isin S_{xy}}{\sum} g(s,t)^{Q}} $$

    <aside> 💡 算术平均滤波器核几何均值滤波器(尤其后者)更适合处理高斯噪声或均值随机噪声。反谐波平均滤波器更适合于处理冲激噪声,但有一个缺点,即必须知道噪声是暗噪声还是亮噪声,以便选取合适的Q(Q选错了将是灾难性的)

    </aside>

中值滤波对多种随机噪声具有良好去噪能力,引起的模糊更少,尤其对脉冲噪声非常有效
最大值&最小值最大值消除胡椒噪声,最小值消除盐噪声
中点滤波结合了统计和求平均操作,使得对于高斯和均匀随机分布函数的噪声有较好的效果
修正阿尔法中值适用于多种噪声的图像处理,如高斯和椒盐噪声的混合情况
  • 统计计数滤波器
    • 中值滤波器

      用一个预定义的像素邻域中的灰度中值来代替像素点值

      对多种随机噪声有良好的去噪能力,引起的模糊更好,尤其对脉冲噪声非常有效

      $$ \hat{f}(x,y)=\underset{(s,t)\isin S_{xy}}{median}\{g(s,t)\} $$

    • 最大值&最小值滤波器

      最大值:可发现图像中的亮点,可消除胡椒噪声

      最小值:可发现图像中的暗点,可消除盐粒噪声

      $$ \hat{f}(x,y)=\underset{(s,t)\isin S_{xy}}{max}\{g(s,t)\} $$

      $$ \hat{f}(x,y)=\underset{(s,t)\isin S_{xy}}{min}\{g(s,t)\} $$

    • 中点滤波器

      结合了统计排序和求平均的操作,使其对高斯和随机分布的噪声有较好的效果

      $$ \hat{f}(x,y)=\frac{1}{2}\left[\underset{(s,t)\isin S_{xy}}{max}\{g(s,t)\}+\underset{(s,t)\isin S_{xy}}{min}\{g(s,t)\}\right] $$

    • 修正阿尔法均值滤波器

      假设我们在邻域$S_{xy}$内删除$g(s,t)$的d/2个最低灰度值和d/2个最高灰度值,用$g_r(s,t)$表示剩下的像素,对剩下的求平均有

      $$ \hat{f}(x,y)=\frac{1}{mn-d}\sum_{(s,t)\isin S_{xy}}g_r(s,t) $$

      d的取值范围从0到mn-1.当d=0时为算术平均,d=mn-1时为,为中值滤波器

    • 自适应中值滤波器

      基本思想(自适应):

      • 中值滤波器的尺寸如果太小的话,可以较好的保护图像的某些细节,但往往遗漏了噪声;多次滤波造成特征缺失,图像模糊
      • 反之,如果太大的话,可以加强噪声的抑制能力,但图像会很模糊,有时候会滤去图像中的一些细线、尖锐边角等重要细节,从而破坏图像的几何结构
      • 因此,先采用小尺寸的中值滤波;当发现滤波器不够好时,再扩大其尺寸,再次滤波;再不好,再扩大,直到达到最大尺寸 滤波器好坏的判断标准是指现在滤波器的像素中值是否是一个脉冲
      • 滤波方法为确定滤波核后查看当前像素是不是脉冲,不是的话就直接用当前像素,如果是脉冲就用当前滤波核的中值灰度代替当前像素灰度

      算法描述:

      Level A:(判断$Z_{med}$是否为一个脉冲(黑或白))

      if(Z_{min}<Z_{med}<Z_{max})
      	Level B //判断中值不是椒盐噪声
      else 
      	增加W_{size}//增加窗口尺寸
      	if(W_{size}<S_{max})
      		Level A
      	else
      		输出Z_{med}
      

      Level B:(判断$Z_{xy}$是否为一个脉冲,如果不是则不处理)

      if(Z_{min}<Z_{xy}<Z_{max})
      	输出Z_{xy}
      else
      	输出Z_{med}
      

      Untitled

      对于更大概率密度的椒盐噪声去除需考虑:

      • 去除椒盐噪声
      • 平滑其他非椒盐噪声
      • 并减小物体边界细化或粗化等失真

(四)只存在噪声的频率域图像复原

(五)退化情况的空间域图像复原

(六)退化情况的频率域图像复原-逆向滤波

如果噪声可以忽略,并且退化函数已知或已经获得,那么我们可以直接把退化函数除去 也称为逆滤波器

$$ \hat{F}(u,v)=\frac{G(u,v)}{H(u,v)} $$

但往往会含有噪声:

$$ \hat{F}(u,v)=F(u,v)+\frac{N(u,v)}{H(u,v)} $$

特别当H(u,v)为零或接近于零时,噪声将占主导地位(逆滤波器对噪声极为敏感)

解决策略:

忽略掉H接近零的部分,即为高频部分;在实际处理中通常使用M(u,v):

$$ M(u,v)= \begin{cases} {1\over H(u,v)}\ \ \ \ \ \ \ if \ \ u^2+v^2\le w_0^2\\ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ \ u^2+v^2 > w_0^2 \end{cases} $$

第六章 Morphological 形态学图像处理

1、概述

  • 基本思想:使用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。

  • 形态学的数学基础和所用语言是****集合论(由一组形态学的代数算子组成)

  • 基本运算:膨胀、腐蚀、开操作和闭操作

  • 集合论基础

    集合的并、交、补、差

    集合A的反射$\hat{A}$,定义为$\hat{A}=\{w|w=-a,a\isin A\}$即关于原集合原点对称(对于结构体就是以SE原点旋转180度)

    集合A平移到点$z=(z_1,z_2)$,表示为(A)z,定义为

    $$ {(A)}_z=\{c|c=a+z,a\isin A\} $$

    集合关系:设$A$和$B$为$\mathbb{R}^2$的子集,$A$为物体区域,$B$为某种结构元素,则$B$结构单元对$A$的关系分为三类

    1. $B$包含于$A$,$B\subset A$
    2. $B$击中$A$,$B\cap A !=\Phi$
    3. $B$击不中$A$,$B\cap A =\Phi$

    Untitled

2、膨胀和腐蚀

  • 膨胀

    $$ A\bigoplus B=\left\{z|\left(\widehat{B}\right)_z\bigcap A\subseteq A\right\} $$

    B的反射进行平移与A的交集是A的子集

    相当于拿集合B对集合A作一遍滤波式加法

    Untitled

    案例:

    桥接文字裂缝;

    优点:可在一幅二值图像中直接得到结果,可与低通滤波方法对比(由二值图像生成灰度图像,阈值化后才能获得二值图像)

  • 腐蚀

    $$ A\Theta B=\{z|(B)_z\subseteq A\} $$

    相当于拿集合B对集合A作一遍滤波式减法

    Untitled

3、开操作和闭操作

  • 开操作

    • 作用:
      • 在不改变形状的前提下,使图像的轮廓变得光滑
      • 断开狭窄的间断
      • 消除细的突出物
    • 用B对A腐蚀,然用B对结果膨胀

    $$ A\circ B=(A\Theta B)\oplus B $$

    $$ A\circ B=\bigcup \{(B)_z|(B)_z\subseteq A\} $$

    简单的几何解释:B对A进行开运算是B的所有平移的并集,以便B能完全拟合A

    Untitled

    平移:$O(A+x, B)=O(A, B)+x$

    反外延Antiextensivity:$O(A, B) \subseteq A$

    单调递增:$A_1 \subseteq A_2 \Rightarrow\left(A_1 \circ B\right) \subseteq\left(A_2 \circ B\right)$

    幂等:$(A \circ B) \circ B=A \circ B$

  • 闭操作

    • 作用:
      • 在不明显改变面积前提下,使图像的轮廓变得光滑
      • 弥合狭窄的间断和细长的鸿沟
      • 消除小的孔洞
      • 填补轮廓线中的裂痕
    • 用B对A膨胀,然用B对结果腐蚀

    $$ A\bullet B=(A\oplus B)\Theta B $$

    Untitled

    几何解释:闭运算是B的所有不与A重叠的平移的并集的补集

    Untitled

    平移:$C(A+x, B)=C(A, B)+x$

    外延Extensivity:$A \subseteq C(A, B)$

    单调递增:$A_1 \subseteq A_2 \Rightarrow\left(A_1 \bullet B\right) \subseteq\left(A_2 \bullet B\right)$

    幂等:$(A \bullet B) \bullet B=A \bullet B$

4、形态学的主要应用

  • 1、边界提取

    $$ \beta(A)=A-(A \Theta B) $$

    先用B对A腐蚀,然后用A减去腐蚀得到,B是结构元素SE

    Untitled

  • 2、区域填充

    $$ X_k=\left(X_{k-1} \oplus B\right) \cap A^c $$

    交互定义起始点

    $X_0=p,如果X_k=X_{k-1}$,则算法在迭代的第k步结束。$X_k$和A的并集包含被填充的集合和它的边界

    每一步中与$A^c$的交集操作将把结果限制在感兴趣区域内,则实现条件膨胀

    Untitled

  • 3、连通分量的提取

    Untitled

    交互定义起始点

    Untitled

    Untitled

    Untitled

    • 拓扑描述符(topological descriptors):
      • H:孔洞数
      • C:连接组件数
      • E=C-H(欧拉数)
  • 凸壳(复习PPT里没有,不整理了自己看)

  • 8
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值