深度解析丨StableDiffusion如何实现模特精准换装以及如何替换模特

一、前言

来了来了,之前给大家承诺的模特换装教程它来了!本篇教程主要运用StableDiffusion这个工具来进行操作,下面会通过几个小案例,给大家展示不同需求下,我们该如何使用StableDiffusion来辅助我们完成服装效果展示。本教程适用于电商设计场景、摄影场景等多个运用人物设计的实战中,全程干货,需要大家慢慢吸收,学会后轻松拿捏模特换装,let’s
go!

二、更换模特

2.1 不一样的设计需求!

换个不一样的需求单,简单粗暴,直达灵魂最深处(本篇文章随性而为😎)

2.2 前期准备

老样子,我们先把模型以及素材准备好:

1、Stable Diffusion 模型:majicMIX realistic 麦橘写实_v6

2、controlnet插件模型以及黑白蒙版图

在大模型选择上,大家可以灵活点,用上一些主流的写实模型即可,后续我给大家分享一下Stable
Diffusion一些主流模型及下载地址,后续大家可以在我的小圈子中看到(看主页)。

Controlnet插件一般用活菩萨秋叶的启动包就会自带,不过模型需要自己安装一下,在往期文章我有专门介绍过Controlnet的插件安装教程以及模型的下载方式,此处不多做说明。

图中为【智设AIGC社区】,整理了AI绘画的教程及其相关资源,本文所用到的模型素材都提供在里面。

准备一张黑白蒙版图片,注意以下几点:

1、用PS把“假人模特”部分填充黑色(即后续需要生成真人模特部分)

2、等比缩放尺寸(与原图比例一致),把这张图片的尺寸缩小,方便后续的操作;

3、白色区域为蒙版内容,黑色为非蒙版内容(SD内的蒙版原理)

2.3 关键词描述

正向关键词:

Best quality,masterpiece,ultra high res,(photorealistic:1.4),raw
photo,1girl,long hair,

最佳质量,杰作,超高分辨率,(逼真度:1.4),原始照片,1个女孩,长发,

反向关键词(通用关键词,哪哪都可用):

(worst quality:2),(low quality:2),(normal quality:2),lowres,bad anatomy,bad
hands,text,error,missing fingers,extra digit,fewer digits,cropped,jpeg
artifacts,signature,watermark,username,blurry,bad_pictures,DeepNegativeV1.x_V175T,nsfw,

2.4 图生图-上传重绘蒙版

重点来了,本案例的核心部分,就是使用图生图的【重绘蒙版】来进行模特的重新绘制。

如图所示,选择【图生图】,把上述的模型以及关键词加上,点击【上传重绘蒙版】,上传原图及蒙版图。

注意:原图及蒙版图尺寸要一致哦~

下面的参数直接抄作业即可,说几个重点参数:

1、蒙版边缘模糊度需要调整为0,这个参数类似于PS的羽化,把蒙版边缘进行模糊度处理。这里我用ps经过精准的抠图绘制成蒙版,所以不需要这个参数起作用,不然边缘会有原图的灰色在里面;

2、蒙版模式设置为【重绘非蒙版内容】,前面说过白色区域为蒙版内容,黑色为非蒙版内容,大家灵活往里面带入,黑白是可以切换的,后续调整【蒙版模式】即可;

3、重绘倍数选择2倍放大,我测试1倍图生成的效果不好,后期调整区间很大;

4、【重绘幅度】为0.5,太高会生成的乱七八糟。

2.5 初步跑图(批量)

把上述的参数调整好了之后,我们就可以进行初步的跑图了,可以调整总批次数量(显卡一般的控制在4左右)。

到这一步基本上就差不多了,挑选一张相对满意的图片,可以进行细节上的优化,比如手部及脸部等。

2.6 局部重绘细节处

把选中的图片上传到【局部重绘】中,用画笔涂抹需要修改的地方,把下方的蒙版模式改为【重绘蒙版内容】,点击生成即可。

可以重复多次使用局部重绘功能,把脸部和手部分开重绘,效率会更高点,同时,也可以通过修改正向关键词,来重绘涂抹地方,比如加上长发等等。

这个案例就说到这里,后期还有优化空间,大家会这个操作方法才是本次案例的核心,来看看对比吧~

三、inpaint anything插件

上一个案例我们是ps手动绘制蒙版的,有没有自动且更便捷的方式呢,当然有,就是使用这个【inpaint anything插件】:

使用 Segment
Anything,用户可以通过简单地指向所需区域来指定蒙版,而不是手动填充它们。这可以提高蒙版创建过程的效率和准确性,从而可能获得更高质量的修复结果,同时节省时间和精力。

3.1 inpaint anything安装

插件安装方法一直都是如此,相信看到本篇教程的你也绝不是小白了,我就简单带过,另一种方法可以通过网址下载:https://github.com/Uminosachi/sd-
webui-inpaint-anything

安装完成后刷新【web-ui】即可看到这个插件,之后下载模型,这个插件就不做详细介绍,看操作路径即可。

3.2 生成蒙版图

先准备一张模特图片,上传到【Input image】中,点击运行。

如图所示,右侧会出现【语义分割色块图】,按照下方步骤操作。

说明一下:我们选中的区域,它会给我们在下方高亮显示,选中的部分在后面会给我们生成黑白遮罩图。

之后在左侧找到以下的选项,按步骤操作,你就会得到一张蒙版图,最后发送到图生图中~

后面的操作是不是很熟悉了,就是第一个案例的操作,这个插件就是为我们生成蒙版图。

3.3 换个模特吧

回到图生图,模型及关键词用第一个案例的,无需做出任何改动,下方的参数也不需要动,只需要把尺寸调整下,与上传图片的尺寸一致即可。

搞定了,就这么简单,有问题的地方发送到【局部重绘】中,修正调整即可。

来看一下对比:

我们还可以扩展一下,只能换人吗?我们换个衣服试试。

3.4 换件衣服吧

上面是保持衣服不变,更换人物。生图原理就是利用图生图蒙版功能,大家应该知道怎么做了吧,我们只需要把蒙版模型改动一下即可。

我们先把正向关键词改动下吧,把关于人物的描述删掉,更换成【yellow clothes】黄色衣服试试:

Best quality,masterpiece,ultra high res,(photorealistic:1.4),raw
photo,(((yellow clothes))),

下面参数有两个点需要注意:

1、蒙版模式改为【重绘蒙版内容】;

2、重绘幅度调大一点,之前是0.5,现在我们改成0.7,不然衣服颜色是黄色+红色相结合的颜色。

然后生成一批图试试~先埋个坑,哈哈哈!

怎么样,还可以吧😏,是不是发现这动作不对,胳膊乱飞~那咱们就继续往下看。

3.5 Openpose姿势控制

其实大家做图的时候要灵活运用功能,就上述生成的姿势是有问题的,解决这个问题方法就可以用openpose,提取原图的姿态。

使用方法如下图,没什么难度,抄作业即可。

再次生成,模特的姿势就成功的还原了,很完美!可以通过修改关键词来调整衣服的颜色以及款式,完事~

四、自定义模特

换个一个场景,上面两个案例都是有模特的素材,如果没有模特只有一件服装可以生成模特图吗,也是可以的,我们往下看:

4.1 准备素材

当我们有一张服装图时,还需要准备两张应用在stablediffusion的素材图:

1、一张服装白底图(应用在controlnet上);

2、黑白蒙版图(应用在重绘蒙版上)。

注:黑白蒙版图可以用上面提到的插件做哦,别忘记用了。

4.2 安装3D 骨架模型编辑 (3D Openpose)

先说下思路,当我们只有服装时,我们需要在服装基础上创建一个人物,stablediffusion是无法精准的基于服装生成人物,所以我们需要使用【3D
Openpose】这个插件来创建一个人物骨架图,然后运用【controlnnet】插件来精准控图。

安装插件跟上面一样,在扩展中安装即可,如果扩展安装不了那就是用本地安装,网址在这:

https://github.com/nonnonstop/sd-webui-3d-open-pose-editor/tree/main

安装完成后,重启【web-ui】即可在这看到【3D Openpose】,关于这个怎么用很简单,大家尝试着用用,熟悉一下即可(我个人觉得不是很好操作)

4.3 创建人物骨骼图

进入到【3D
Openpose】,把原图放进来,然后调整骨架与图片的对应位置,可以根据自己的想法调整骨架姿势,需要多尝试用几遍。注意:图片尺寸一定要设置好,一定!

调整完之后,点击【生成】,点击【发送到controlnet】,点击【发送到图生图】即可。

注意:基于写本篇教程的sd版本,我们需要先到【图生图】模块把controlnet先勾选启用,发送才有效!

4.4 设置controlnet及重绘蒙版

回到【图生图】的controlnet中,我们需要使用两个controlnet插件,第一个就是【openpose】,其次是【canny】。

1、【openpose】只需选择该模型即可,预处理器不用选择;

2、【canny】目的是控制服装边缘,上传前面准备的白底图,如果你前面蒙版图没有抠细致,这一步很重要。

重绘蒙版与前面两个案例一样,包括模型与关键词,一模一样即可。

4.5 跑图完成

上述参数设置完成后,跑图即可,剩下的细节之处本教程就不做演示了,与第一个案例一样,细节之处有问题的地方使用【局部重绘】修正即可,或者是PS处理下(话说PS
Beta好像不能用了😒)

五、总结

本教程详细介绍了如何使用StableDiffusion实现模特精准换装以及换模特。通过几个实际案例,展示了StableDiffusion在不同场景下的应用,通过学习本教程,您可以轻松掌握模特换装的技巧,提高工作效率。文章使用的大模型、Lora模型、SD插件、示例图片等,都已经上传到我整理的
Stable Diffusion 绘画资源中。有需要的小伙伴文末扫码自行获取。

针对各位AIGC初学者,这里列举了一条完整的学习计划,感兴趣的可以阅读看看,希望对你的学习之路有所帮助,废话不多说,进入正题:

目标应该是这样的:

第一阶段(30天):AI-GPT从入门到深度应用

该阶段首先通过介绍AI-GPT从入门到深度应用目录结构让大家对GPT有一个简单的认识,同时知道为什么要学习GPT使用方法。然后我们会正式学习GPT深度玩法应用场景。

-----------

  • GPT的定义与概述
  • GPT与其他AI对比区别
  • GPT超强记忆力体验
  • 万能GPT如何帮你解决一切问题?
  • GPT表达方式优化
  • GPT多类复杂应用场景解读
  • 3步刨根问底获取终极方案
  • 4步提高技巧-GPT高情商沟通
  • GPT深度玩法应用场景
  • GPT高级角色扮演-教学老师
  • GPT高级角色扮演-育儿专家
  • GPT高级角色扮演-职业顾问
  • GPT高级角色扮演-专业私人健身教练
  • GPT高级角色扮演-心理健康顾问
  • GPT高级角色扮演-程序UX/UI界面开发顾问
  • GPT高级角色扮演-产品经理
  • GPT高级技巧-游戏IP角色扮演
  • GPT高级技巧-文本冒险游戏引导
  • GPT实操练习-销售行业
  • GPT实操练习-菜谱推荐
  • GPT实操练习-美容护肤
  • GPT实操练习-知识问答
  • GPT实操练习-语言学习
  • GPT实操练习-科学减脂
  • GPT实操练习-情感咨询
  • GPT实操练习-私人医生
  • GPT实操练习-语言翻译
  • GPT实操练习-作业辅导
  • GPT实操练习-聊天陪伴
  • GPT实操练习-育儿建议
  • GPT实操练习-资产配置
  • GPT实操练习-教学课程编排
  • GPT实操练习-活动策划
  • GPT实操练习-法律顾问
  • GPT实操练习-旅游指南
  • GPT实操练习-编辑剧本
  • GPT实操练习-面试招聘
  • GPT实操练习-宠物护理和训练
  • GPT实操练习-吸睛爆款标题生成
  • GPT实操练习-自媒体爆款软件拆解
  • GPT实操练习-自媒体文章创作
  • GPT实操练习-高效写作推广方案
  • GPT实操练习-星座分析
  • GPT实操练习-原创音乐创作
  • GPT实操练习-起名/解梦/写诗/写情书/写小说
  • GPT提升工作效率-Word关键字词提取
  • GPT提升工作效率-Word翻译实现
  • GPT提升工作效率-Word自动填写、排版
  • GPT提升工作效率-Word自动纠错、建议
  • GPT提升工作效率-Word批量生产优质文章
  • GPT提升工作效率-Excel自动化实现数据计算、分析
  • GPT提升工作效率-Excel快速生成、拆分及合并实战
  • GPT提升工作效率-Excel生成复杂任务实战
  • GPT提升工作效率-Excel用Chat Excel让效率起飞
  • GPT提升工作效率–PPT文档内容读取实现
  • GPT提升工作效率–PPT快速批量调整PPT文档
  • GPT提升工作效率-文件批量创建、复制、移动等高效操作
  • GPT提升工作效率-文件遍历、搜索等高效操作
  • GPT提升工作效率-邮件自动发送
  • GPT提升工作效率-邮件自动回复
  • GPT接入QQ与QQ群实战
  • GPT接入微信与微信群实战
  • GPT接入QQ与VX多用户访问实战
  • GPT接入工具与脚本部署实战

第二阶段(30天):AI-绘画进阶实战

该阶段我们正式进入AI-绘画进阶实战学习,首先通过了解AI绘画定义与概述 ,AI绘画的应用领域 ,PAI绘画与传统绘画的区别 ,AI绘画的工具分类介绍的基本概念,以及AI绘画工具Midjourney、Stable Diffusion的使用方法,还有AI绘画插件和模板的使用为我们接下来的实战设计学习做铺垫。

  • -----------
    AI绘画定义与概述
  • AI绘画的应用领域
  • AI绘画与传统绘画的区别
  • AI绘画的工具分类介绍
  • AI绘画工具-Midjourney
  • AI绘画工具-百度文心一格
  • AI绘画工具-SDWebUI
  • AI绘画工具-Vega AI
  • AI绘画工具-微信中的AI绘画小程序
  • Midjourney学习-Discord账号的注册
  • Midjourney Bot界面讲解
  • Midjourney提示词入门
  • Midjourney高级提示词
  • Midjourney版本参数学解读
  • Midjourney功能参数
  • Midjourney上采样参数
  • AI绘画组合应用1-Midjourney + GPT
  • AI绘画组合应用2-Stable Diffusion + GPT
  • AI绘画组合应用3-AI绘画+ GPT +小红书
  • AI绘画组合应用4-AI绘画+ GPT +抖音
  • AI绘画组合应用5-AI绘画+ GPT +公众号
  • AI绘画组合应用6-AI绘画+ GPT + AI视频
  • AI绘画组合应用7-AI绘画+ GPT + 小说人物/场景
  • AI绘画设计-Logo设计
  • AI绘画设计-套用万能公式
  • AI绘画设计-引用艺术风格
  • AI绘画设计-GPT加速设计方案落地
  • AI绘画设计-Vega AI渲染线稿生成设计
  • AI绘画设计-摄影
  • AI绘画设计-头像设计
  • AI绘画设计-海报设计
  • AI绘画设计-模特换装
  • AI绘画设计-家具设计
  • AI绘画设计-潘顿椅设计
  • AI绘画设计-沙发设计
  • AI绘画设计-电视柜设计
  • AI绘画设计-包装设计的提示词构思

第三阶段(30天):AI-视频高段位

恭喜你,如果学到这里,你基本可以找到一份AIGC副业相关的工作,比如电商运营、原画设计、美工、安全分析等岗位;如果新媒体运营学的好,还可以从各大自媒体平台收获平台兼职收益。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • -----------
    AI视频定义与概述
  • AI视频制作-方案与创新
  • AI视频制作-各种工具实操
  • AI视频制作-美学风格(油画/插画/日漫/水墨)
  • AI视频制作-形象设定(人物形象服装/造型/表情)
  • AI视频画面特效处理
  • AI视频画面拼接
  • AI视频画面配音
  • AI视频画面包装
  • AI视频锁定人物逐一精修
  • 多种表情动作/情节
  • 动态模型转换-视频内部元素关键帧
  • 动态模型转换-图像整体运动
  • 动态模型转换-虚拟人
  • 动态模型转换-表面特效
  • AI自媒体视频-深问GPT,获取方案
  • AI自媒体视频-风格设置(诗歌/文言文等)
  • AI自媒体视频-各行业创意视频设计思路
  • AI视频风格转换
  • AI视频字数压缩
  • AI视频同类型衍生
  • AI视频Pormpt公式

第四阶段(20天):AI-虚拟数字人课程

  • -----------
    AI数字人工具简介
  • AI工作台界面功能展示及介绍
  • AI数字人任务确定
  • AI数字人素材准备
  • AI知识、语料的投喂
  • AI模型训练
  • AI训练成果展示及改进
  • AI数字人直播系统工具使用
  • AI人物在各平台直播
  • AI数字人在OBS平台直播

第五阶段(45天以上):AIGC-多渠道变现课程

该阶段是项目演练阶段,大家通过使用之前学习过的AIGC基础知识,项目中分别应用到了新媒体、电子商务等岗位能帮助大家在主流的新媒体和电商平台引流和带货变现。

-----------

  • AI-小红书引流变现
  • AI-公众号引流变现
  • AI-知乎引流变现
  • AI-抖音引流/带货变现
  • AI-写作变现
  • AI-B站引流变现
  • AI-快手引流变现
  • AI-百家号引流变现
  • AI-制作素材模板出售变现
  • AI-周边定制变现
  • AI-手机壳图案定制变现
  • AI-周边产品定制变现
  • AI-服装图案定制变现
  • AI-个性头像定制变现
  • AI-起号与知识付费变现
  • AI-实现淘宝销售变现

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名AIGC的正确特征了。

这份完整版的AIGC资料我已经打包好,需要的点击下方二维码,即可前往免费领取!

在这里插入图片描述

### 如何检测 `transformers` 库是否成功安装 可以通过以下方法验证 `transformers` 是否已正确安装: #### 方法一:通过 Python 脚本导入并打印版本号 创建一个简单的 Python 文件或直接运行交互式解释器,尝试导入 `transformers` 并打印其版本号。如果能够正常执行而无错误,则说明安装成功。 ```python import transformers print(transformers.__version__) ``` 上述代码会输出当前安装的 `transformers` 版本号[^1]。如果没有抛出任何异常,表明库已被正确加载到环境中。 #### 方法二:调用 Hugging Face 提供的测试模型功能 可以利用 `transformers` 中内置的功能来进一步确认安装状态。例如,加载预训练的语言模型不会引发错误则表示一切正常。 ```python from transformers import pipeline nlp = pipeline('sentiment-analysis') result = nlp("I love using the Transformers library!") print(result) ``` 这段脚本不仅检验了基础模块的存在性,还测试了一些核心组件的工作状况,比如管道机制以及自动下载权重文件的能力[^2]。 #### 方法三:解决常见冲突问题后的再验证 有时即使按照常规流程操作也可能遇到兼容性难题,像某些特定情况下因已有依赖项干扰而导致失败的情况就需要额外处理。如当系统里预先存在不同步或者损坏的 YAML 解析工具时,就需先更新它再来完成最终的确立过程。 具体命令如下所示: ```bash pip install PyYAML --ignore-installed pip install transformers==2.5.1 ``` 之后再次重复前面提到过的检查手段即可得知修正后的成果如何[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值