前言
帐篷映射,是一种分段线性映射,其主要是根据确定的映射系统生成随机的混沌序列,混沌序列的取值范围通常在0,1之间,有研究表明混沌序列在算法初始化方便比随机初始化的性能更加优越,故混沌序列常用于粒子群算法、遗传算法等群体智能算法中的种群初始化,因混沌序列的原理属于数学范畴,本文主要讨论混沌序列在初始化时的应用。
映射关系

帐篷映射由于其函数图像类似于帐篷而得名,通其他混沌映射一样,帐篷映射具有‘局部确定性,长期随机性’的特点,帐篷映射对对初值有较强的敏感性,在进行随机序列生成时,一般要注意以下几点:
α的取值最好不要取0.5,当α为0.5时,混沌序列可能会呈现出较强的周期性
α的取值越接近0.5,则生成的序列 越‘混沌’
初值的取值不应与α以及端点0,1值相等
在实际编程中,混沌序列的生成还与计算机浮点数据的精度和计算过程中产生的数据截断有关,具体的生成可能与实际理论值有所区别
代码测试--生成混沌序列
代码的编写是基于python,调用了python中的numpy库与random库,具体的代码如下:
Position = np.zeros(100)
for i in range(100):
temp = 0.5
if i == 0:
Position[i] = random.random()
print(Position[i])
else:
if Position[i - 1] < temp:
Position[i] = Position[i - 1] / temp
else:
Position[i] = (1 - Position[i - 1]) / (1 - temp)
print(Position)
plt.figure(0)
plt.plot(Position, linestyle='-', marker='o')
plt.show()
代码中temp的的值为α的取值,用于对函数进行分段
当
1、当 temp的取值为0.5时,生成的混沌序列为:

在计算过程中,由于计算机存储精度以及计算精度的影响,序列在迭代一定次数后可能会等于0,并且以后该值不会发生改变
2、当 temp的取值为0.45时,生成的混沌序列为:

在计算过程中,序列值不会趋近于0,并且生成的序列分布也比价均匀
3、当 temp的取值为0.3时,生成的混沌序列为:

在计算过程中,序列值也不会趋近于0,但是生成的混沌序列在中间段分布的较多,两端分布的较少
代码测试--生成混沌坐标
1、temp为0.4时

2、temp为0.1时

后记
在种群算法的优化中,种群的初始化越均匀,越有利于算法搜索到全局最优值。根据帐篷映射产生的混沌坐标在空间范围内具又较好的遍历性与随机性,所以适合应用在群体智能算法中。