遗传算法
优点:
在求解多峰问题时遗传算法交叉和变异算子的无方向性,这有助于其具有更好的全局探索能力,在优化多峰函数时可以采用遗传算法
既可以应用于离散问题,也可以应用于连续问题
遗传算法中染色体之间可以实现信息的共享与互换,这有利于整个种群中的个体均匀的、整体的向最优解移动,而粒子群算法的移动是以最优解为导向的,所有的例子均向最优解的方向移动
缺点:
遗传算法不论是交叉还是变异操作,都缺乏明确的导向性,因此其对空间最优解的逼近能力不强
优点:
在求解多峰问题时遗传算法交叉和变异算子的无方向性,这有助于其具有更好的全局探索能力,在优化多峰函数时可以采用遗传算法
既可以应用于离散问题,也可以应用于连续问题
遗传算法中染色体之间可以实现信息的共享与互换,这有利于整个种群中的个体均匀的、整体的向最优解移动,而粒子群算法的移动是以最优解为导向的,所有的例子均向最优解的方向移动
缺点:
遗传算法不论是交叉还是变异操作,都缺乏明确的导向性,因此其对空间最优解的逼近能力不强