将当前节点特征和一阶节点特征进行聚合来表征当前节点的新特征,通过这种方式有利于引入图节点的上下文信息,使得每个节点预测结果受邻居节点的影响,那么具体怎么集成呢?由于邻接矩阵可以表示节点之间的连接关系,我们可以在邻接矩阵上稍作调整,添加单位矩阵来结合节点自身的连接,并进行归一化,每一行表示一个节点与其他节点的连接权重大小,并作为当前节点的特征集成权重。
我们也可以将调整后的邻接矩阵看成是一种掩码(MASK),每一行权重为0的位置表示其对当前节点的聚合特征没有影响,由于这种权重本身由图的连接情况决定,是【固定的】和【不可学习的】,这种基于【整个图】结构的特征聚合网络就是GCN,属于转导学习。

通过将当前节点的特征向量与其一阶节点的特征向量【加和平均】的方式进行聚合来表征当前节点的上下文表征向量,这种方法只考虑了当前节点的连接情况,没有考虑其一阶节点的连接情况,容易造成节点的度越大,参与的节点特征聚合次数越多,而这种度越大的节点本身特殊性应该越弱,影响应该进行削弱。具体实现:

这个公式中:
,I是单位矩阵
是
的度矩阵(degree matrix)
X是每一层的特征
W神经网络模型权重参数
σ是非线性激活函数

代码如下:
class GraphConvolution(nn.Module):
def __init__(self, input_dim, output_dim, use_bias=True):
"""图卷积:L*X*\theta
Args:
----------
input_dim: int
节点输入特征的维度
output_dim: int
输出特征维度
use_bias : bool, optional
是否使用偏置
"""
super(GraphConvolution, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.use_bias = use_bias
self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
if self.use_bias:
self.bias = nn.Parameter(torch.Tensor(output_dim))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight)
if self.use_bias:
init.zeros_(self.bias)
def forward(self, adjacency, input_feature):
"""邻接矩阵是稀疏矩阵,因此在计算时使用稀疏矩阵乘法
Args:
-------
adjacency: torch.sparse.FloatTensor
邻接矩阵
input_feature: torch.Tensor
输入特征
"""
support = torch.mm(input_feature, self.weight)
output = torch.sparse.mm(adjacency, support)
if self.use_bias:
output += self.bias
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.input_dim) + ' -> ' + str(self.output_dim) + ')'
# 模型定义
# 读者可以自己对GCN模型结构进行修改和实验
class GcnNet(nn.Module):
"""
定义一个包含两层GraphConvolution的模型
"""
def __init__(self, input_dim=1433):
super(GcnNet, self).__init__()
self.gcn1 = GraphConvolution(input_dim, 16)
self.gcn2 = GraphConvolution(16, 7)
def forward(self, adjacency, feature):
h = F.relu(self.gcn1(adjacency, feature))
logits = self.gcn2(adjacency, h)
return logits