【AI绘画模型23】Deepseek Janus模型:AI图像识别+图像生成

在线使用工作流

=================================================================

Janus模型介绍

Janus是深度求索(DeepSeek)公司开源的多模态大模型,主打AI图像生成与AI图像识别,支持文生图、图生文等多模态交互,属于其AGI技术布局中的关键产品之一。(简而言之:一个能画图、能识图、开源可定制的AI模型)

  • GitHub代码库:https://github.com/deepseek-ai/Janus

===

Janus模型在线使用

图像识别(图生文)

  1. 使用魔法网络打开网址:https://huggingface.co/spaces/deepseek-ai/Janus-Pro-7B,选多模态识别,红色箭头位置上传图片,QUESTION处写上explain this picture(解释这个图片)点击CHAT即可。

  1. 使用魔法网络稍等片刻,Response即可显示图片识别的结果。

  1. 也可以使用早期版本来做图像识别

👍

Janus 1.3B【图像识别】https://huggingface.co/spaces/deepseek-ai/Janus-1.3B

JanusFlow-1.3B【图像识别】https://huggingface.co/spaces/deepseek-ai/JanusFlow-1.3B

图像生成(文生图)

  1. 打开网址:https://huggingface.co/spaces/deepseek-ai/Janus-Pro-7B,选文生图,红色箭头位置写提示词,绿色箭头位置点击即可生成图片

  1. 稍等片刻,即可显示图片生成的结果。

Janus模型本地使用

三个步骤请按顺序执行,如果那个步骤已经安装对应软件可忽略此步骤。

安装ComfyUI

详见来来的这篇公众号文章:

安装插件

  1. 打开COMFYUI的右上角的管理器,然后选择节点管理

  1. 打开魔法网络。搜索JANUS,三选1,点击INSTALL安装即可

👍

https://github.com/chflame163/ComfyUI_Janus_Wrapper/ https://github.com/ZHO-ZHO-ZHO/ComfyUI-DeepSeek-JanusPro https://github.com/CY-CHENYUE/ComfyUI-Janus-Pro

安装模型

👍

  1. 模型将在首次运行时自动下载。如果下载失败必须手动下载模型。
  2. 下载https://huggingface.co/deepseek-ai/Janus-Pro-7B/tree/main所有文件并复制到 ComfyUI\models\Janus-Pro\Janus-Pro-7B 文件夹。
  3. 下载https://huggingface.co/deepseek-ai/Janus-Pro-1B/tree/main所有文件并复制到 ComfyUI\models\Janus-Pro\Janus-Pro-1B 文件夹。
  4. 提供1B(10亿参数)和7B(70亿参数)两种规模模型,适配不同算力需求,并遵允许开发者自由使用及二次开发模型。

图像识别(图生文)

打开工作流文件,红色箭头处选择Janus-Pro-1B模型,绿色框位置写上图像提示词,提示词支持中文/英文 详细描述图片的内容,输出要求: 一份中文描述, 一份英文描述

加粗样式

图像生成(文生图)

打开工作流文件,红色箭头处选择Janus-Pro-1B模型,绿色框位置写上生成图像的提示词,提示词支持英文

Janus模型资料

Janus模型版本介绍

一共有三个版本,Janus-Pro为最新模型。

Janus-Pro:通过数据和模型缩放统一多模态理解和生成

Janus-Pro是之前作品Janus的高级版本。具体而言,Janus-Pro包含(1)优化的训练策略,(2)扩展的训练数据,以及(3)扩展至更大的模型尺寸。通过这些改进,Janus-Pro在多模态理解和文本-图像指令遵循能力方面都取得了显著进步,同时还增强了文本-图像生成的稳定性。

Janus:解耦视觉编码,统一多模态理解和生成

Janus是一个新的自回归框架,统一了多模态理解和生成。它通过将视觉编码解耦到单独的路径中来解决以前方法的局限性,同时仍然使用单个统一的Transformer架构进行处理。这种解耦不仅消除了视觉编码器在理解和生成过程中的角色冲突,而且增强了框架的灵活性。Janus超越了以前的统一模型,并匹配或超过特定任务模型的性能。Janus的简单性、高度灵活性和有效性使其成为下一代统一多模态模型的有力候选者。

JanusFlow:协调自回归和校正流,实现统一的多模态理解和生成

JanusFlow引入了一种极简架构,将自回归语言模型与整流流集成在一起,整流流是生成建模中最先进的方法。我们的关键发现表明,整流流可以直接在大型语言模型框架内训练,无需复杂的架构修改。大量的实验表明,JanusFlow在各自的领域中实现了与专用模型相当或上级的性能,同时在标准基准测试中显著优于现有的统一方法。这项工作代表了向更有效和通用的视觉语言模型迈出的一步。

Janus模型发布时间

2025.01.27:Janus-Pro发布,这是Janus高级版本,显著改善多模态理解和视觉生成。

2024.11.13:JanusFlow发布,这是一种新的统一模型,具有用于图像生成的整流流。

2024.10.23:VLMEvalKit中添加了用于再现论文中多模态理解结果的评估代码。

2024.10.20:Janus-1.3B 发布

写在最后

常用工作流已经给各位小伙伴打包好了,可以按需自取,无偿分享。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值