一个多智能体元编程框架,给定一行需求,它可以返回产品文档、架构设计、任务列表和代码。这个项目提供了一种创新的方式来管理和执行项目,将需求转化为具体的文档和任务列表,使项目管理变得高效而智能。对于需要进行规划和协调的项目,这个框架提供了强大的支持.
MetaGPT’s 能力展示
https://github.com/geekan/MetaGPT/assets/34952977/34345016-5d13-489d-b9f9-b82ace413419
例如,如果你输入’ python startup.py ’ ’ Design a RecSys like今日头条’ ',你会得到很多输出,其中之一是data & api Design
生成一个分析和设计示例的成本约为0.2美元(在GPT-4 API费用中),而生成一个完整项目的成本约为2.0美元。
1.安装
1.1 安装视频指南
- 常规安装
#Step 1: Ensure that NPM is installed on your system. Then install mermaid-js. (If you don't have npm in your computer, please go to the Node.js offical website to install Node.js https://nodejs.org/ and then you will have npm tool in your computer.)
npm --version
sudo npm install -g @mermaid-js/mermaid-cli
#Step 2: Ensure that Python 3.9+ is installed on your system. You can check this by using:
python --version
#Step 3: Clone the repository to your local machine, and install it.
git clone https://github.com/geekan/metagpt
cd metagpt
pip install -e.
Note:
-
If already have Chrome, Chromium, or MS Edge installed, you can skip downloading Chromium by setting the environment variable
PUPPETEER_SKIP_CHROMIUM_DOWNLOAD
totrue
. -
Some people are having issues installing this tool globally. Installing it locally is an alternative solution,
npm install @mermaid-js/mermaid-cli
-
don’t forget to the configuration for mmdc in config.yml
PUPPETEER_CONFIG: "./config/puppeteer-config.json" MMDC: "./node_modules/.bin/mmdc"
-
if
pip install -e.
fails with error[Errno 13] Permission denied: '/usr/local/lib/python3.11/dist-packages/test-easy-install-13129.write-test'
, try instead runningpip install -e. --user
-
将Mermaid图表转换为SVG、PNG和PDF格式。除了Node.js版本的mermaid - cli之外,你现在还可以选择使用Python版本的剧作家、pyppeteer或mermaid。
-
Playwright
- Install Playwright
pip install playwright
- Install the Required Browsers
to support PDF conversion, please install Chrominum.
playwright install --with-deps chromium
- modify
config.yaml
uncomment MERMAID_ENGINE from config.yaml and change it to
playwright
MERMAID_ENGINE: playwright
-
pyppeteer
- Install pyppeteer
pip install pyppeteer
- Use your own Browsers
pyppeteer alow you use installed browsers, please set the following envirment
export PUPPETEER_EXECUTABLE_PATH = /path/to/your/chromium or edge or chrome
please do not use this command to install browser, it is too old
pyppeteer-install
- modify
config.yaml
uncomment MERMAID_ENGINE from config.yaml and change it to
pyppeteer
MERMAID_ENGINE: pyppeteer
-
mermaid.ink
- modify
config.yaml
uncomment MERMAID_ENGINE from config.yaml and change it to
ink
MERMAID_ENGINE: ink
Note: this method does not support pdf export.
- modify
-
1.2 Docker安装指南
#Step 1: Download metagpt official image and prepare config.yaml
docker pull metagpt/metagpt:latest
mkdir -p /opt/metagpt/{config,workspace}
docker run --rm metagpt/metagpt:latest cat /app/metagpt/config/config.yaml > /opt/metagpt/config/key.yaml
vim /opt/metagpt/config/key.yaml # Change the config
#Step 2: Run metagpt demo with container
docker run --rm \
--privileged \
-v /opt/metagpt/config/key.yaml:/app/metagpt/config/key.yaml \
-v /opt/metagpt/workspace:/app/metagpt/workspace \
metagpt/metagpt:latest \
python startup.py "Write a cli snake game"
#You can also start a container and execute commands in it
docker run --name metagpt -d \
--privileged \
-v /opt/metagpt/config/key.yaml:/app/metagpt/config/key.yaml \
-v /opt/metagpt/workspace:/app/metagpt/workspace \
metagpt/metagpt:latest
docker exec -it metagpt /bin/bash
$ python startup.py "Write a cli snake game"
The command docker run ...
do the following things:
- Run in privileged mode to have permission to run the browser
- Map host directory
/opt/metagpt/config
to container directory/app/metagpt/config
- Map host directory
/opt/metagpt/workspace
to container directory/app/metagpt/workspace
- Execute the demo command
python startup.py "Write a cli snake game"
1.3 构造自定义
#You can also build metagpt image by yourself.
git clone https://github.com/geekan/MetaGPT.git
cd MetaGPT && docker build -t metagpt:custom .
1.4 相关配置
- Configure your
OPENAI_API_KEY
in any ofconfig/key.yaml / config/config.yaml / env
- Priority order:
config/key.yaml > config/config.yaml > env
#Copy the configuration file and make the necessary modifications.
cp config/config.yaml config/key.yaml
Variable Name | config/key.yaml | env |
---|---|---|
OPENAI_API_KEY # Replace with your own key | OPENAI_API_KEY: “sk-…” | export OPENAI_API_KEY=“sk-…” |
OPENAI_API_BASE # Optional | OPENAI_API_BASE: “https://<YOUR_SITE>/v1” | export OPENAI_API_BASE=“https://<YOUR_SITE>/v1” |
2.相关教程
#Run the script
python startup.py "Write a cli snake game"
#Do not hire an engineer to implement the project
python startup.py "Write a cli snake game" --implement False
#Hire an engineer and perform code reviews
python startup.py "Write a cli snake game" --code_review True
After running the script, you can find your new project in the workspace/
directory.
- Preference of Platform or Tool
You can tell which platform or tool you want to use when stating your requirements.
python startup.py "Write a cli snake game based on pygame"
- 使用指南
NAME
startup.py - We are a software startup comprised of AI. By investing in us, you are empowering a future filled with limitless possibilities.
SYNOPSIS
startup.py IDEA <flags>
DESCRIPTION
We are a software startup comprised of AI. By investing in us, you are empowering a future filled with limitless possibilities.
POSITIONAL ARGUMENTS
IDEA
Type: str
Your innovative idea, such as "Creating a snake game."
FLAGS
--investment=INVESTMENT
Type: float
Default: 3.0
As an investor, you have the opportunity to contribute a certain dollar amount to this AI company.
--n_round=N_ROUND
Type: int
Default: 5
NOTES
You can also use flags syntax for POSITIONAL ARGUMENTS
2.1 快速开始
It is difficult to install and configure the local environment for some users. The following tutorials will allow you to quickly experience the charm of MetaGPT.
Try it on Huggingface Space
- 相关链接
https://github.com/geekan/MetaGPT/assets/2707039/5e8c1062-8c35-440f-bb20-2b0320f8d27d
3.更多推荐:终端LLM AI模型:mlc-llm
大型语言模型的机器学习编译(MLC LLM)是一种高性能的通用部署解决方案,允许使用带有编译器加速的本机api来本地部署任何大型语言模型。这个项目的使命是让每个人都能使用ML编译技术在每个人的设备上开发、优化和部署人工智能模型。
项目链接:https://github.com/mlc-ai/mlc-llm
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓