【LLM大模型】基于强化学习的扩散模型微调:教程与综述

在这里插入图片描述

本教程全面调查了用于微调扩散模型以优化下游奖励函数的方法。虽然扩散模型因其出色的生成建模能力广为人知,但在生物学等领域的实际应用中,需要生成最大化某些期望指标(如RNA的翻译效率、分子的对接评分、蛋白质的稳定性)的样本。在这些情况下,扩散模型不仅可以生成逼真的样本,还可以明确地最大化感兴趣的度量。这些方法基于强化学习(RL)的概念。我们解释了各种RL算法的应用,包括PPO、可微优化、奖励加权最大似然估计(MLE)、价值加权采样和路径一致性学习,这些算法专门用于微调扩散模型**。我们旨在探索基本方面,例如不同RL微调算法在各种场景中的优缺点、RL微调相对于非RL方法的好处,以及RL微调的正式目标(目标分布)。此外,我们还将探讨它们与相关主题的联系,如分类器指导、Gflownets、基于流的扩散模型、路径积分控制理论和从非标准化分布(如MCMC)中采样。本教程的代码可在https://github.com/masa-ue/RLfinetuning Diffusion Bioseq获得。

在这里插入图片描述

扩散模型(Sohl-Dickstein等,2015;Ho等,2020;Song等,2020)被广泛认为是强大的生成建模工具。它们能够通过紧密模拟训练数据的特征来准确地建模复杂的分布。扩散模型在多个领域有许多应用,包括计算机视觉(Podell等,2023)、自然语言处理(Austin等,2021)、生物学(Avdeyev等,2023;Stark等,2024;Li等,2023)、化学(Jo等,2022;Xu等,2022;Hoogeboom等,2022)以及生物学(Avdeyev等,2023;Stark等,2024;Campbell等,2024)。尽管扩散模型在捕捉训练数据分布方面表现出显著的能力,但常常需要根据特定的下游奖励函数对这些模型进行定制。例如,在计算机视觉领域,Stable Diffusion(Rombach等,2022)作为一个强大的预训练模型骨干,但我们可能希望通过优化下游奖励函数(如美学评分或人类对齐评分(Black等,2023;Fan等,2023))来进一步微调它。同样,在生物学和化学等领域,已经开发出各种复杂的扩散模型用于DNA、RNA、蛋白质序列和分子,有效地建模生物和化学空间。然而,生物学家和化学家通常旨在优化特定的下游目标,如DNA序列中的细胞特异性表达(Gosai等,2023;Lal等,2024;Sarkar等,2024)、RNA序列的翻译效率/稳定性(Castillo-Hair和Seelig,2021;Agarwal和Kelley,2022)、蛋白质序列的稳定性/生物活性(Frey等,2023;Widatalla等,2024)或分子的QED/SA评分(Zhou等,2019)。为了实现这一目标,已经提出了许多通过强化学习(RL)微调扩散模型的算法(如Black等,2023;Fan等,2023;Clark等,2023;Prabhudesai等,2023;Uehara等,2024),旨在优化下游奖励函数。RL是一种机器学习范式,代理通过学习进行顺序决策以最大化奖励信号(Sutton和Barto,2018;Agarwal等,2019)。在我们的背景下,RL由于扩散模型固有的顺序结构,自然而然地成为一种合适的方法,其中每个时间步涉及一个“决策”,对应于该步样本的去噪方式。本教程旨在回顾最近的研究成果,为对从整体角度理解基于RL的微调基础知识感兴趣的读者提供帮助,包括基于RL的微调相对于非RL方法的优势、不同RL微调算法的优缺点、RL微调的正式目标及其与分类器指导等相关主题的联系。本教程的内容主要分为三个部分。此外,作为实现示例,我们还发布了利用RL微调进行引导的生物序列(DNA/RNA)生成的代码,地址为:https://github.com/masa-ue/RLfinetuning Diffusion Bioseq。

  1. 我们旨在提供当前算法的全面概述。特别是,鉴于扩散模型的顺序特性,我们可以自然地将微调框架为马尔可夫决策过程(MDP**)中的强化学习(RL)问题,如第3和第4节所述。因此,我们可以采用任何现成的RL算法,例如PPO(Schulman等,2017)、可微优化(直接奖励反向传播)、加权MLE(Peters等,2010;Peng等,2019)、价值加权采样(类似于Dhariwal和Nichol(2021)中的分类器指导)以及路径一致性学习(Nachum等,2017)。我们在第4.2和第6节详细讨论了这些算法。我们不仅仅列出每个算法,还旨在呈现它们的优缺点,以便读者可以根据自己的具体目的选择最合适的算法。
  2. 我们在第7节根据奖励反馈的获取方式分类了各种微调场景。这一区分对实际算法设计至关重要。例如,如果我们可以获得准确的奖励函数,计算效率将成为我们的主要关注点。然而,在奖励函数未知的情况下,必须从具有奖励反馈的数据中学习它们,从而需要考虑反馈效率和分布转移的问题。特别是,当需要从静态离线数据中学习奖励函数而没有任何在线交互时,我们必须解决过度优化的问题,即微调模型被分布外样本误导,生成低真实奖励的样本。这一点非常重要,因为在离线场景中,具有反馈的离线数据分布的覆盖范围有限,因此分布外区域可能非常广泛(Uehara等,2024)。
  3. 我们详细讨论了基于RL的微调方法与文献中密切相关的方法之间的关系,如第8节中的分类器指导(Dhariwal和Nichol,2021)、第9节中的基于流的扩散模型(Liu等,2022;Lipman等,2023;Tong等,2023)、第10节中的非标准化分布采样(Zhang和Chen,2021)、第6.3节中的Gflownets(Bengio等,2023)以及第6.2.3节中的路径积分控制理论(Theodorou等,2010;Williams等,2017;Kazim等,2024)。我们总结了以下关键信息:
  • 第6.3节:Gflownets中使用的损失本质上等同于从一种特定RL算法——路径一致性学习中导出的损失。
  • 第8节:在条件生成中使用的分类器指导被视为一种特定的基于RL的微调方法,我们称之为价值加权采样。正如Zhao等(2024)中形式化的那样,这一观察表明,任何现成的基于RL的微调算法(如PPO和可微优化)都可以应用于条件生成。
  • 第10节:从非标准化分布(通常称为吉布斯分布)中采样在各个领域都是一个重要且具有挑战性的问题。尽管MCMC方法传统上用于解决这一任务,但认识到其与基于RL的微调目标的相似性,表明现成的RL算法也可以有效地解决从非标准化分布中采样的挑战。

在这里插入图片描述

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 26
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值