论大模型在金融行业的应用场景

摘要:众多的金融机构及金融科技企业一直都在积极拥抱大模型的到来,除了已经涌现出若干金融垂域大模型以外,应用场景的探索也是重中之重,近来DeepSeek掀起大模型热潮,与Manus刮起的智能体旋风,又进一步增加了该领域的积极性与紧迫性。目前为止,相当多的金融大模型应用层出不穷,百花齐放,但仔细观察可以发现,大多还集中在改变或提升人机交互的方式方法层面,如智能客服、文档协助处理与生成、NL2SQL等全行业耳熟能详的领域。那么,大模型能否更加深入与广泛地与金融业务或科技需求融合以推进金融科技水平发生阶跃性的升级,甚至推动金融行业发生新一轮的智能化变革?本文首先提出是否并如何引入大模型的原则,提出金融行业可控大模型与受动智能体的价值观与方法论,接着试图尽量清晰地界定大模型的能力边界,然后对大模型在金融行业的具体应用领域进行全面的分析与讨论,旨在为大模型驱动的新一轮金融智能化行动提供参考与建议。

一、大模型驱动AI无处不在

DeepSeek将本就处于热点的大模型话题推向了新的高潮,模型能力不断加强;Manus又将智能体应用再一次推到了热点,相关的竞争与狂欢进入白热化与新的发展阶段。个人端与产业端投入大模型与智能体学习与探索的热情空前高涨,之前的很多观望者也纷纷入局。可以说,当下正在或者已经进入AI驱动数智化变革的关键时期。

然而各种实质性的进步大都发生在基础模型层面,大模型的商业价值发挥与应用场景探索,现阶段似乎还没有发生质的改变。

首先,至今,从通用基础大模型的技术趋势上讲,还是处于快速迭代的高速发展期,具体如下。

  1. 在以DeepSeek为标志的大模型新势力推动下,大模型推理、多模态、与人类对齐等能力边界不断拓展、快速提升;
  2. AI大模型从云侧向端侧渗透和延伸,小尺寸模型与端侧AI设备/AI算力芯片能力快速提升,云端协同计算架构逐渐成型;能独立运行的端侧AI应用成为可行;
  3. 使用大模型的成本持续降低,专业、小型、廉价的大模型形成发展趋势;
  4. 数据与AI大模型融合趋势明显,数据基础设施(库湖仓等)统一承载AI算力的一体化数据引擎发展迅速;
  5. 大模型监管不断趋严,大模型安全与相关检测技术地位不断提升;
  6. 技术上尝试将大模型数据与推理的分离也是一个值得关注并有意义的发展方向;
  7. 智能体模式将大大的扩大范围,进一步大幅度提升各种应用的自主化、自动化程度;
  8. 关于大模型能力局限于“基于大量数据的统计重组与关联”的“人胜论”,与大模型将全面超越人类的“模胜论”的研究与争论一段时间内还会持续,但大模型应用快速发展的趋势不可阻挡。

除了基础模型方面各种开闭源大模型层出不穷,争奇斗妍以外,各行各业也掀起大模型智能应用探索的热潮,金融行业自然也不例外。本文认为,大模型有望彻底改变人工智能在金融科技中的应用状况,驱动AI无处不在。

长期以来,人工智能在金融行业的应用一直处于比较尴尬的状态:都在重视都在尝试却少有真正起到关键性作用的案例与场景,更不要说成为推动金融科技进步的主要因素了。“智能”这个词,相当多的情况下背后实际上是预定义规则,或者是部分自动化流程,以统计/机器学习为主体实现的并不多;而相当多采用统计/机器学习方法的项目,实效也并不理想。这主要是因为经典机器学习方法:

  1. 一是往往需要大量的、高质量的场景相关训练数据;
  2. 二是多数情况下需要参与人员同时具备极高的数据科技专业技能与极为深厚的场景相关业务知识经验,这通常是非常困难并难以规模化普及的;
  3. 三是所生产模型也只能适用于该专用场景,难以通用。       

实践证明,人员、成本及技术等多个因素决定了以机器学习为主的经典人工智能很难成为平民化的通用IT设施,是一个“奢侈品”,而绝大多数关于AI中台的规划设计都停留在概念上。因此,人工智能一直都没有成为金融科技建设发展的主力军,成点困难,有点无面,难以普及,名不符实......。

而大模型驱动的新生代人工智能则完全不同:

  1. 首先基础大模型本身是预训练的,它出生就已经带有相当丰富的通用知识,即使不做任何工作,直接在各行各业也都能产生一些效果;
  2. 其次,目前对基础大模型进行专向知识的训练补充,可以通过微调(fine-tuning)来实现,通常并不需要大批量的数据就可以产生非常不错的迁移效果;
  3. 另外,大模型还可以结合向量数据库,通过不需要训练的RAG(检索增加生成)方式高质效地实现对通用大模型进行专向知识补充;
  4. 更进一步,智能体Agent技术的编排规划能力又可以通过大模型得到极大的补充与增强,反过来有效约束了大模型的发散特征,大大扩展与提高了大模型解决问题的范围与质效。

因此,本文认为,虽然离AGI还有一段距离,但大模型有望使人工智能实现平民化,大大降低AI的使用难度,扩大应用范围,推动AI无处不在,成为通用IT基础设施。

但关于技术趋势分析,如上仅仅说了通用基础大模型与人工智能中台的趋势还不够,现阶段,在大模型应用落地层面,其实正处于一个尴尬期,或者说冷静期。

直到今天,不光是金融行业,相当多的行业头腰部、区域、领域,都已经基本建成或者正在建设大模型为代表的基础设施(可称为新基建),这是2022年大模型潮流奔涌而来后最明显的成果之一。但另外一个客观现象也值得注意,就是:虽然热度很高也都在积极探索,但真正有成效的应用大都还集中在、或者说本质还是处于“改变或提升人机交互的方式方法层面”,如智能客服、文档协助处理与生成、NL2SQL等全行业耳熟能详的领域(即使是这些,真正做出好的、优秀效果的也不算多),用大模型来提升行业核心业务能力产生实效的案例就更少了,特别在产业界更是如此,包括金融领域。这个现象也令很多人(包括一些最初对大模型极为热衷的人)也在内心提出疑问:大模型到底能在哪些方面产生实效作用?大模型究竟能不能发挥出明显推进行业数字化水平的作用

对科技服务厂商来讲,这是否正好是一个机遇期?还是不然?这是本文需要重点分析与回答的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值