我们利用 LM Studio 这款软件来可视化部署 Llama3。
选择好对应的操作系统下载安装包,在下载好之后进行安装。在安装好之后我们就可以打开软件并使用了:
我们在中间的输入框部分输入 llama 来搜索并安装 llama 系列的模型,不过在进行搜索时会发现搜索功能失效了:
查阅了一下资料发现是收 hc 的影响导致的:
社区也给出了解决方案:
也就是说如果要搜 Llama3,那么直接搜 lmstudio-community,而如果要搜 Phi,那就搜 microsoft:
不过虽然解决了搜索的问题,但对于大多数小伙伴来说也依然有诸多限制,最大的限制就是网络问题,因为国内无法正常从 Hugging Face 上拉取模型,好多小伙伴可能在这一步就被 block 住了。今天三金给大家介绍一种魔改的方法,通过 hf 镜像站来做到即使在国内也能正常搜索并下载模型!!
MacOS 系统
我们打开「访达-应用程序-LM Studio」,然后右击 LM Studio 程序,在二级菜单中选中「显示包内容」:
然后我们将里面的文件夹使用 VS Code 或者任意一款编辑器打开:
如上图,以 VS Code 为例:
- 我们点击编辑器左侧的搜索
- 然后在第一个输入框中输入
huggingface.co
,这会将 LM Studio 程序中所有使用到huggingface.co
链接的地方都搜索出来 - 紧接着我们在第二个输入框中输入 hf 的镜像网站地址
hf-mirror.com
,这表示我们将要把所有匹配到的内容都替换为镜像站点的网址 - 最后点击右侧的替换按钮进行替换
完成上述四步之后,我们重启 LM Studio 就可以在国内正常进行搜索和下载模型了
Windows 系统
流程都是一样的,唯一的不同就是文件的存储位置。
- 在 Windows 系统上安装 LM Studio 时不能指定目录,只会安装到
C:\Users/[你的 Windows 电脑用户名]\AppData\LM-Studio
- 进入到这个目录之后可以看到你下载的 LM Studio 程序都包含哪些文件,我们以 0.2.21 版本为例,在当前目录下应该会有一个
app-0.2.21
的文件夹 - 通过 VS Code 打开这个文件夹,然后执行之前说的四个步骤将里面的
huggingface.co
都替换成hf-mirror.com
即可 - 重启 LM Studio 就可以正常使用了
选择本地模型开始对话
当我们下载好模型之后,就可以:
- 点击 LM Studio 左侧菜单中的 AI Chat
- 选择刚刚下载好的模型
- 开始对话!!
我们先让它来介绍一下自己:
生成回答的速度很快,就是语言还是英文,不过没关系,我们只要让它使用中文回答就可以了:
并且它写代码也贼快:
注意
大家在选择模型时,一定要考虑好自己的电脑配置,尤其是 GPU 不太行的电脑,最好不要安装一下子就跑满甚至跑超 CPU 的模型,这样对电脑本身的损耗是非常大的!!
可以通过在 AI Chat 中「选择模型下拉框」左边展示 CPU 的部分来监控使用模型时 CPU 的使用率,如果太大的话建议立即停止,或者通过降低模型精度和分块等方式来减少计算要求。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓