AI大模型本地化部署GraphRAG+Ollama,轻松实现基于知识图谱的智能问答(附教程)

之前写过一篇使用deepseek和智谱AI实现《红楼梦》中人物关系智能问答的随笔
但deepseek提供的免费tokens只有500万个,GraphRAG构建图谱的索引和问答过程,对token的消耗是巨量的
因此亟需找到一种本地化部署的方案,不用依赖在线大模型的api形式。

看到国外博客上有人公布了GraphRAG+Ollama的本地化部署方案,按照博客内容进行了复现,这里做一个详细记录。

本地化部署方案的优点:

  • 本地大模型构建图谱和问答,可以利用Ollama随时拉取最新大模型,并进行切换;
  • 无需消耗token,极大降低了成本;
  • 启动简单,可以实现快速部署和实验。

本地部署步骤:

  1. 在本地新建conda环境,可以确保所有新建的依赖环境是独立的
conda create -n graphrag-ollama-local python=3.10
conda activate graphrag-ollama-local
  1. 安装Ollama,支持pip install形式安装
    也可以访问官网查看更多安装细节https://ollama.com/
pip install ollama
  1. 使用Ollama拉取大模型,实现GraphRAG的索引和向量化流程
ollama pull mistral #llm
ollama pull nomic-embed-text #embedding
  1. 从github拉取GraphRAG+Ollama项目
git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
  1. 进去上述项目中
cd graphrag-local-ollma/
  1. 安装GraphRAG包
pip install -e .
  1. 类似GraphRAG方案中,需要新建input地址来存放外部文档
mkdir -p ./ragtest/input
  1. 在GraphRAG-local-ollama项目中,提供了部分样例文档,这部分英文文档可以进行初始化测试(跑成功)
cp input/* ./ragtest/input
  1. 初始化ragtest,生成settings.yaml文件
python -m graphrag.index --init --root ./ragtest
  1. 将本项目中的settings.yaml文件直接复制到安装好的graphrag包中,项目样例配置文件,已经将llm和embedding对应的大模型,分别配置为mistral和nomic-embed-text
mv settings.yaml ./ragtest
  1. 配置完成后,可以开始GraphRAG的索引流程
python -m graphrag.index --root ./ragtest
  1. 上述索引过程大概耗时30分钟,索引构建完成,就可以看到样例文档的图谱文件,此时可以进行文档的智能问答
python -m graphrag.query --root ./ragtest --method global "What is machine learning?"
  1. 除了智能问答以为,我们还想看看样例文档的图谱构建结果如何,也就是图谱长什么样子,可以借助如下命令进行

修改配置文件settings.yaml中的参数

snapshots:
  graphml: true
  1. 此时构建索引过程中,样例文档的图谱文件会自动生成一份graphml文件,可以通过python中的graphml包对这个文件机型读取

graphml文件的保存路径为output/20240708-161630/artifacts/summarized_graph.graphml

可以使用项目中visualize-graphml.py文件对graphml进行可视化,可以看到样例文档的图谱形状,包括各个实体及关系。

python visualize-graphml.py

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值