手把手系列|一篇文章教会你使用有RAG功能的CAMEL框架(附教程)

在本教程中,我们将简短地介绍检索增强生成RAG (Retrieval-Augmented Generation)的组成部分,并详细介绍如何在CAMEL框架中使用Customized RAG和Auto RAG。备注:本次搭建使用Milvus作为默认向量存储。

01

RAG组成部分

检索增强生成 (Retrieval-Augmented Generation, RAG) 是一种结合了基于检索和基于生成方法的高级自然语言处理方法,用于提升语言模型的性能。在RAG模型中,有两个主要组成部分:

1.检索器 (Retriever)

这个组件负责从大型数据库或知识库中检索相关信息。检索器使用查询或提示词搜索与输入内容匹配的相关文档、段落或句子。

2.生成器 (Generator)

这个组件是一个语言模型,基于输入查询和检索到的信息生成文本。生成器使用检索到的信息,生成连贯且流畅的回答。

RAG架构通过基于检索器和生成器,提高生成文本的准确性和相关性。检索器为生成器提供了相关的上下文和信息,帮助生成过程。具备RAG的智能体具有更高的准确性、最新的知识和改进的泛化能力。自定义RAG(Customized RAG)是专门针对某个领域进行手动微调的,适用于特定的应用场景。而自动化RAG(Auto RAG)则通用程度更高,能够动态地检索和生成回应,适合更广泛、较不专业的使用场景。

02

使用支持RAG的camel框架

加载CAMEL论文

首先,我们要加载CAMEL论文,大家可以点击以下网址找到论文https://arxiv.org/pdf/2303.17760.pdf,这将作为我们的本地示例数据。 在这里插入图片描述
在这里插入图片描述

自定义RAG

我们在本小节会设置自定义RAG的Pipeline,以VectorRetriever为例。我们将使用OpenAI Embedding作为嵌入模型,因此需要在下面设置OPENAI_API_KEY。在这里插入图片描述
导入并嵌入实例:在这里插入图片描述
导入并设置向量存储实例(访问Milvus官网获取Milvus URL和Token):在这里插入图片描述
导入并设置检索器实例:在这里插入图片描述
我们使用集成的Unstuctured Module 将内容拆分成小块,每小块的最大字符数为500。拆分后的文本都会嵌入并存储到向量存储实例中。在这里插入图片描述
现在我们可以通过向量存储去检索信息。在默认情况下,它会返回与最高余弦相似度得分最高的文本内容。且相似度得分应该要高于0.75,以确保检索和查询的内容是相关的。你也可以根据需要去更改top_k值和similarity_threshold值。返回的字符串列表包括:

  • 相似度得分
  • 内容路径
  • 元数据
  • 文本

在这里插入图片描述
那让我们来尝试一个不相关的查询,将检索不到相关内容:在这里插入图片描述

自动化RAG

本小节中,我们将使用默认运行AutoRetriever,它使用OpenAIEmbedding作为默认的嵌入模型,使用Milvus作为默认的向量存储。你需要做的是:1. 设置内容输入路径,可以是本地路径或远程URL。
2. 设置Milvus的远程URL和API密钥。
3. 提供一个Query。在这里插入图片描述

ChatAgent

我们将展示如何结合AutoRetriever和一个ChatAgent。首先,让我们设置一个智能体函数,在这个函数中,我们可以通过提供一个Query从而获取回应。在这里插入图片描述
在这里插入图片描述
再导入并设置向量存储实例(访问Milvus官网获取Milvus URL和Token):在这里插入图片描述
那现在就让智能体告诉你什么是CAMEL AI吧!在这里插入图片描述

END

大家可以使用不同Query进行尝试哦!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### RAG框架概念 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了传统信息检索技术和现代自然语言处理中的生成模型的方法。这种方法允许机器学习系统不仅依赖于训练数据内部的知识,还能动态访问外部知识源,在面对新问题时获取最新、最准确的信息[^4]。 RAG 技术特别适用于那些需要持续更新或扩展背景资料的任务场景,比如问答系统、对话代理以及文档摘要等应用。通过引入外部资源作为补充材料,可以有效地减少由纯神经网络预测带来的不确定性——即所谓的“幻觉”现象,从而提高输出内容的真实性和可靠性。 ### 开源实现汇总 #### 1. **RAGFlow** 作为一个新兴的开源项目,RAGFlow 致力于简化基于 RAG 架构的应用开发过程。此工具包提供了多个预先配置好的模块和支持自动化的工作流设计,使得开发者能够更便捷地集成各种类型的数据库和服务接口,进而加速原型搭建和技术验证的速度[^2]。 - 显著特性: - 提供了一套完整的预构建组件; - 支持多种主流的数据存储方案; - 集成了先进的索引机制以优化查询效率; ```python from ragflow import PipelineBuilder pipeline = PipelineBuilder().add_retriever('elasticsearch').add_generator('transformers') ``` #### 2. **基于ChatGLM 和LangChain 实现的大规模离线部署方案** 这类解决方案专注于为企业级用户提供安全可控且高效的本地化部署选项。借助强大的中文理解能力(如 ChatGLM),再加上灵活易用的应用编程接口(APIs),这套组合拳可以在不连接互联网的情况下完成复杂的语义理解和响应生成任务[^3]。 ```bash git clone https://github.com/your-repo/chatglm-langchain.git cd chatglm-langchain pip install -r requirements.txt python app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值