# _*_ coding:utf-8 _*_
import numpy as np
import cv2
import dlib
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# cv2读取图像
img = cv2.imread("nm.png")
# 取灰度
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
xxList = []
yyList = []
maxX = 0
minX = 0
maxY = 0
minY = 0
# 人脸数rects
rects = detector(img_gray, 0)
for i in range(len(rects)):
# 特征提取
landmarks = np.matrix([[p.x, p.y] for p in predictor(img, rects[i]).parts()])
for idx, point in enumerate(landmarks):
if idx > 49:
pos = (point[0, 0], point[0, 1])
x = point[0, 0],
y = point[0, 1]
xList = []
yList = []
xList.append(x) # 添加数据
yList.append(y)
for k in xList:
list(k)
xxList.append(k[0])
# for l in xxList:
# print(l)
maxX = max(xxList)
minX = min(xxList)
# print(maxX,minX)
for p in yList:
# list(p)
yyList.append(p)
# yyList.append(j[0])
print(p)
maxY = max(yyList)
minY = min(yyList)
# print(idx + 1, pos)
# 利用cv2.circle给每个特征点画一个圈,共68个
cv2.circle(img, pos, 2, color=(0, 255, 0))
# 利用cv2.putText输出1-6
font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(img, str(idx + 1), pos, font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)pts=np.array([[10,3],[48,
# 19],[60,3],[98,19]],np.int32) #数据类型必须是int32
# pts=pts.reshape((-1,1,2))
cv2.rectangle(img, (minX-10, maxY+20), (maxX+10, minY-10), (255, 255, 255), 1) # 闭合矩形
print(maxY, minY)
'''这里 reshape 的第一个参数为-1, 表明这一维的长度是根据后面的维度的计算出来的。
如果第三个参数是 False,我们得到的多边形是不闭合的(首尾不相连)。
'''
# cv2.polylines(img,[pts],True,(0,0,255),1) # 图像,点集,是否闭合,颜色,线条粗细
cv2.namedWindow("img", 2)
cv2.imshow("img", img)
cv2.waitKey(0)
基于Dlib的嘴部识别
最新推荐文章于 2024-10-17 21:19:44 发布