Gating mechanisms

0:前话:简单介绍RNN,LSTM,

RNN即循环神经网络,即相比于其他神经网络可以数据进行有序学习,对先前的事件进行记忆,从而可以处理一些序列化的任务,例如文本、视频等。但这样做,对于一些需要‘长期记忆’的事情,在反向传播的时候常常会出现梯度消失或者梯度爆炸情况。在LSTM中则使用门控机制,解决这个问题。但由于参数太多,导致训练比较麻烦,则产生了GRU。
在这里插入图片描述

1:什么是Gating mechanisms?

门控其实就是通过门控制信息通过的多少。门控单元可以选择性记忆它认为重要的东西,这也和后续出现的注意力机制有着一定的相似之处。其允许给定的输入特征X和值在0和1之间的门向量之间进行相乘,得到结果。

2:Gating mechanisms的作用

在门控的经典用法中当属LSTM。在记忆单元中,如果选择全部记忆信息,则会出现很多信息是多余或者错误的。在LSTM中:

  • Xt作为当前的输入
  • h^t-1 表示上一个传递状态
  • Z^f通过上一个学习的状态,选择遗忘上一个阶段的一些知识。通过拼接上一状态和当前输入乘上权重W,通过激活函数变成0 1,则可以达到遗忘某些知识的目的。
  • Z^i 同理,达到选择性记忆当前输入的一些目的。
  • Z^o同理,达到选择性输出给下一个状态的目的。
  • Z 使用tanh函数将其转化为-1 1的信息。
  • C^t 作为当前记忆等于遗忘门控 *上一阶段的记忆+记忆门控 * 当前信息。
  • h^t 当前的状态 = 上一个输出状态* 当前的记忆信息。

在这里插入图片描述
在这里插入图片描述
使用这些门控单元,则可以达到选择性记忆的效果,获取到更多有价值的信息,这也就是门控机制的原理。

3:参考资料

https://zhuanlan.zhihu.com/p/30844905

https://zhuanlan.zhihu.com/p/32085405

Hochreiter, Sepp, and Jürgen Schmidhuber. “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值