转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by--cxlove
给出一个数轴,一些位置有牛,每头牛一个位置xi,以及一个听力值vi。当两头牛交谈时,需要的声音为距离*max(vi,vj)
问声音总和
http://poj.org/problem?id=1990
对于max(vi,vj)比较容易处理,将所有牛按vi的升序排列好
那么考虑当前牛i,与之前牛的max(vi,vj)即为vi,剩下的是需要处理距离总和
建立两个树状数组。
分别统计坐标值小于x的牛有多少头,s1,坐标值小于x的牛的坐标值的和为多少,s2。
可以处理出当前所有牛的x的和,total。
那么对于左边的牛,包括自己也无所谓,即s1*xi-s2,即sigma(xi,xj) j<=i
那么对于右边的牛,即 (total-s2)-(i-s1)*xi
经典的树状数组应用,sad
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#include<set>
#include<string>
#include<queue>
#define inf 1600005
#define M 40
#define N 20000
#define maxn 300005
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define MOD 1000000007
#define lson step<<1
#define rson step<<1|1
#define sqr(a) ((a)*(a))
#define Key_value ch[ch[root][1]][0]
#define test puts("OK");
#define pi acos(-1.0)
#define lowbit(x) ((x)&(-(x)))
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
struct Node{int v,x;bool operator<(const Node n)const{return v<n.v;}}a[N+5];
LL cnt[N+5],s[N+5];
int n;
void Update(LL *b,int x,LL val){
for(int i=x;i<=N;i+=lowbit(i))
b[i]+=val;
}
LL sum(LL *b,int x){
LL ret=0;
for(int i=x;i>0;i-=lowbit(i))
ret+=b[i];
return ret;
}
int main(){
//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF){
for(int i=0;i<n;i++) scanf("%d%d",&a[i].v,&a[i].x);
sort(a,a+n);
mem(cnt,0);
mem(s,0);
LL ans=0,total=0;
for(int i=0;i<n;i++){
Update(cnt,a[i].x,1);
Update(s,a[i].x,a[i].x);
total+=a[i].x;
LL s1=sum(cnt,a[i].x);
LL s2=sum(s,a[i].x);
ans+=a[i].v*(s1*a[i].x-s2-a[i].x*(i+1-s1)+total-s2);
}
printf("%lld\n",ans);
}
return 0;
}