POJ 1990 MooFest(树状数组)

本文介绍了一种使用树状数组解决特定问题的方法。该问题是关于在一个数轴上,给定若干牛的位置及听力值,求解所有牛之间交谈所需声音总和。通过将牛按听力值排序并利用两个树状数组来统计坐标值和数量,从而高效地解决了距离总和计算问题。
摘要由CSDN通过智能技术生成

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by--cxlove

给出一个数轴,一些位置有牛,每头牛一个位置xi,以及一个听力值vi。当两头牛交谈时,需要的声音为距离*max(vi,vj)
问声音总和
http://poj.org/problem?id=1990 
对于max(vi,vj)比较容易处理,将所有牛按vi的升序排列好
那么考虑当前牛i,与之前牛的max(vi,vj)即为vi,剩下的是需要处理距离总和
建立两个树状数组。
分别统计坐标值小于x的牛有多少头,s1,坐标值小于x的牛的坐标值的和为多少,s2。
可以处理出当前所有牛的x的和,total。
那么对于左边的牛,包括自己也无所谓,即s1*xi-s2,即sigma(xi,xj)  j<=i
那么对于右边的牛,即  (total-s2)-(i-s1)*xi 
经典的树状数组应用,sad
#include<iostream>  
#include<cstdio>  
#include<map>  
#include<cstring>  
#include<cmath>  
#include<vector>  
#include<algorithm>  
#include<set>  
#include<string>  
#include<queue>  
#define inf 1600005  
#define M 40  
#define N 20000
#define maxn 300005  
#define eps 1e-7
#define zero(a) fabs(a)<eps  
#define Min(a,b) ((a)<(b)?(a):(b))  
#define Max(a,b) ((a)>(b)?(a):(b))  
#define pb(a) push_back(a)  
#define mp(a,b) make_pair(a,b)  
#define mem(a,b) memset(a,b,sizeof(a))  
#define LL long long  
#define MOD 1000000007
#define lson step<<1
#define rson step<<1|1
#define sqr(a) ((a)*(a))  
#define Key_value ch[ch[root][1]][0]  
#define test puts("OK");  
#define pi acos(-1.0)
#define lowbit(x) ((x)&(-(x)))
#pragma comment(linker, "/STACK:1024000000,1024000000")  
using namespace std;  
struct Node{int v,x;bool operator<(const Node n)const{return v<n.v;}}a[N+5];
LL cnt[N+5],s[N+5];
int n;
void Update(LL *b,int x,LL val){
    for(int i=x;i<=N;i+=lowbit(i))
        b[i]+=val;
}
LL sum(LL *b,int x){
    LL ret=0;
    for(int i=x;i>0;i-=lowbit(i))
        ret+=b[i];
    return ret;
}
int main(){
    //freopen("in.txt","r",stdin);
    while(scanf("%d",&n)!=EOF){
        for(int i=0;i<n;i++) scanf("%d%d",&a[i].v,&a[i].x);
        sort(a,a+n);
        mem(cnt,0);
        mem(s,0);
        LL ans=0,total=0;
        for(int i=0;i<n;i++){
            Update(cnt,a[i].x,1);
            Update(s,a[i].x,a[i].x);
            total+=a[i].x;
            LL s1=sum(cnt,a[i].x);
            LL s2=sum(s,a[i].x);
            ans+=a[i].v*(s1*a[i].x-s2-a[i].x*(i+1-s1)+total-s2);
        }
        printf("%lld\n",ans);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值