(POJ - 3186)Treats for the Cows(区间DP)

题目链接:3186 -- Treats for the Cows

题意:给你n个已经排列好的数字,每次你可以取出最左端的数字或取出最右端的数字,一共n次取完。假设你第i次取的数字是x,你可以获得i*x的价值。你需要规划取数顺序,使获得的总价值之和最大。

分析:这道题容易错看成贪心题,每次选取当前可选择的最小值,这样的贪心思路是错误的。

下面进行正确思路的分析:

我们设dp[i][j]表示从左边取出i个从右边取出j个的所有情况中结果最大值,这个状态可以由两种状态转移过来,一种是dp[i-1][j],也就是从左边取出i-1个从右边取出j个的情况,也就是说我们下个要取的数是第i个数,另一种是dp[i][j-1],也就是从左边取出i个从右边取出j-1个的情况,那么我们下一个要取的数就是第n-j+1个数了,只可能由这两种情况转移,那么状态转移方程就很好写了,就是

for(int i=0;i<=n;i++)
	for(int j=0;i+j<=n;j++)
	{
		if(i>0) dp[i][j]=max(dp[i][j],dp[i-1][j]+a[i]*(i+j));//当前选取第i个元素 
		if(j>0) dp[i][j]=max(dp[i][j],dp[i][j-1]+a[n-j+1]*(i+j));//当前选取第n-j+1个元素 
	}

需要注意的是边界问题,其他的就没什么了,下面附上完整代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
const int N=2003;
int dp[N][N];//dp[i][j]表示从左边取i个数从右边取j个数的最大值
int a[N]; 
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	for(int i=0;i<=n;i++)
	for(int j=0;i+j<=n;j++)
	{
		if(i>0) dp[i][j]=max(dp[i][j],dp[i-1][j]+a[i]*(i+j));//当前选取第i个元素 
		if(j>0) dp[i][j]=max(dp[i][j],dp[i][j-1]+a[n-j+1]*(i+j));//当前选取第n-j+1个元素 
	}
	int ans=0;
	for(int i=0;i<=n;i++)
		ans=max(ans,dp[i][n-i]);
	printf("%d",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值