(POJ - 2912)Rochambeau(带权并查集+枚举)

题目链接:2912 -- Rochambeau

题意:n个小伙伴进行猜拳有戏,除了一个比较聪明的家伙以外,其他人只会出单一的一种,给出m中猜拳的结果,要求找出那个比较聪明的小伙伴序号,并且输出在第几次猜拳可以确定。(注意<,>,=前后可能有空格)

分析:每个人只能有三种选择,所以这道题与食物链那道题目比较像,如果对带权并查集不了解的小伙伴可以先看下那道题,在这附上博客地址:POJ - 1182 食物链(带权并查集)_AC__dream的博客-CSDN博客a​​​​​​

首先可以肯定的是除了比较聪明的那个小伙伴可能与其他人发生矛盾外,其他人之间是不会发生矛盾的(因为其他人只能出单一的一种手势,这个信息非常关键),于是我们就可以枚举聪明的小伙伴,每次去掉关于某位小伙伴的猜拳结果,如果依旧存在矛盾则该小伙伴不可能是聪明的那个小伙伴,反之该小伙伴就有可能是聪明的小伙伴,就这样枚举完所以的小伙伴之后,若聪明的小伙伴可能数量为0,则说明去掉任意一个小伙伴均不能消除矛盾,则至少有两个聪明的小伙伴(注意区分这句话和“这两个有一个可能是聪明的小伙伴”)。若聪明的小伙伴可能数量大于1,则说明聪明的小伙伴是随机的,是谁均可。除了上述两种情况,剩下的就是聪明的小伙伴是唯一的了,那我们应该怎样确定是哪句话判断出来的呢?

由于之前我说过,发生矛盾的猜拳结果一定是包含聪明的小伙伴的,不妨假设与聪明的小伙伴发生矛盾的顺序依次是a1,a2,……,那么当判断出聪明的小伙伴与a2之间发生矛盾时就可判断出语句数,在一开始的枚举过程中当去掉a2,则发生矛盾一定是与a1(因为枚举过程是去掉某一位小伙伴后,当发生矛盾则可判断出当前去掉的不是聪明的小伙伴,可直接break),否则发生矛盾一定是与a2,所以我们只需要记录每次发生矛盾语句的最大值即可,这样就能够得到语句的位置了

下面是代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
const int N=3e3+10;
int fu[N],d[N],n,m;
int a[N],b[N];
char op[N];
void init()
{
	for(int i=1;i<=n;i++)
		fu[i]=i,d[i]=0;
}
int find(int x)
{
	int t=fu[x];
	if(x!=fu[x]) fu[x]=find(fu[x]);
	d[x]=(d[t]+d[x])%3;
	return fu[x];
}
void merge(int x,int y,int z)
{
	int f1=find(x),f2=find(y);
	fu[f2]=f1;
	d[f2]=(d[x]+z-d[y]+6)%3;
}
int main()
{
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		for(int i=1;i<=m;i++)
		{
			scanf("%d%c%d",&a[i],&op[i],&b[i]);
			a[i]++;b[i]++;//标号从1开始 
		}
		int ans=0;//记录裁判可能的人数
		int pos;//记录裁判可能的人选
		int p=0;//记录发现矛盾的位置
		for(int i=1;i<=n;i++)
		{
			init();
			bool flag=true;//当发现矛盾变为false 
			for(int j=1;j<=m;j++)
			{
				if(a[j]==i||b[j]==i) continue;
				if(op[j]=='<')
				{
					int f1=find(a[j]),f2=find(b[j]);
					if(f1!=f2)
						merge(a[j],b[j],1);
					else if((d[a[j]]+1)%3==d[b[j]]) continue;
					else//发现矛盾 
					{
						p=max(p,j);
						flag=false;
						break; 
					}
				}
				else if(op[j]=='>')
				{
					int f1=find(a[j]),f2=find(b[j]);
					if(f1!=f2)
						merge(a[j],b[j],-1);
					else if(d[a[j]]==(d[b[j]]+1)%3) continue;
					else//发现矛盾 
					{
						p=max(p,j);
						flag=false;
						break; 
					}
				}
				else
				{
					int f1=find(a[j]),f2=find(b[j]);
					if(f1!=f2)
						merge(a[j],b[j],0);
					else if(d[a[j]]==d[b[j]]) continue;
					else//发现矛盾 
					{
						p=max(p,j);
						flag=false;
						break; 
					}
				}
			}
			if(flag) pos=i,ans++;
			if(ans>1) break;
		}
		if(ans>1) puts("Can not determine");
		else if(!ans) puts("Impossible");
		else printf("Player %d can be determined to be the judge after %d lines\n",pos-1,p);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值