题目链接:有线电视网 - 洛谷
分析:这是一道树上背包问题,我们设f[i][j]表示以i为节点的子树中选j个终端的最大收益,这样我们最后的答案就是所有的满足f[1][i]>=0的i中的最大值。
至于f数组怎么更新,这就是基本的树上背包更新方法了,不会的可以看这里:(P2014[CTSC1997])选课(树上背包)_AC__dream的博客-CSDN博客
有一点需要注意的是f数组中第二维是终端数量,不能包括转播站,而且我们初始化时应该将所有的f[i][1]=w[i],i>n-m,也就是终端的收益为自身点权,至于转播站初始化就直接将f[i][0]=0即可,因为如果转播站不向终端转播,那么最终答案一定不会包含这个转播站,因为转播站之间的传递还需要一定的费用,还有一点需要注意的就是我们枚举每个转播站包含的终端数时的上界不能是m,应该是以这个转播站为根的子树中的节点数目,如果用m的话会有30%的数据超时。这道题目讲到这基本上也就算是讲完了,算是一个基础的树上背包练习题目,下面附上代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
const int N=3e3+10;
int f[N][N];//f[i][j]表示以i为节点的子树中选j个终端的最大收益
int h[N],e[N],ne[N],w[N],idx,w2[N];
int n,m;
void add(int x,int y,int z)
{
e[idx]=y;
w[idx]=z;
ne[idx]=h[x];
h[x]=idx++;
}
int dp(int x)//返回节点个数
{
if(x>n-m)//终端
{
f[x][1]=w2[x];//给终端节点赋点权
return 1;
}
f[x][0]=0;
int cnt=1;
for(int i=h[x];i!=-1;i=ne[i])
{
int son=e[i];
cnt+=dp(son);//记录以当前节点为根的子树中的节点数目
for(int j=cnt;j>=0;j--)
for(int k=0;k<j;k++)
f[x][j]=max(f[x][j],f[x][k]+f[son][j-k]-w[i]);
}
return cnt;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
memset(f,-0x3f,sizeof f);
for(int i=1;i<=n-m;i++)
{
int k,a,c;
scanf("%d",&k);
for(int j=1;j<=k;j++)
{
scanf("%d%d",&a,&c);
add(i,a,c);
}
}
for(int i=n-m+1;i<=n;i++)
scanf("%d",&w2[i]);
dp(1);
for(int i=m;i>=0;i--)
{
if(f[1][i]>=0)
{
printf("%d",i);
break;
}
}
return 0;
}