Cyclotomic field 分圆域

下面是关于分圆(cyclotomic)域,分圆多项式的习题

(9). 回忆 μ n ( C ) , μ n × ( C ) \mu_n(\mathbb{C}), \mu_n^\times (\mathbb{C}) μn(C),μn×(C)的定义. 求证: μ n ( C ) \mu_n(\mathbb{C}) μn(C) 同构于 Z / n Z \mathbb{Z}/n \mathbb{Z} Z/nZ, 也同构于 1 n Z / Z \frac{1}{n}\mathbb{Z}/\mathbb{Z} n1Z/Z.

(10). 显然对每个正整数 n n n, μ n ( C ) \mu_n(\mathbb{C}) μn(C)都是 U ( 1 ) = { z ∈ C : ∣ z ∣ = 1 } U(1)=\{z \in \mathbb{C}: |z|=1\} U(1)={zC:z=1}的子群. 求证:它们的并集 ⋃ n ∈ Z ≥ 1 μ n ( C ) \bigcup_{n \in \mathbb{Z}_{\geq 1} } \mu_n(\mathbb{C}) nZ1μn(C) 也是 U ( 1 ) U(1) U(1)的子群. 这个群通常也记作 Q / Z \mathbb{Q/Z} Q/Z. 请用上题给出明显的同构 ⋃ n ∈ Z ≥ 1 μ n ( C ) ↔ Q / Z \bigcup_{n \in \mathbb{Z}_{\geq 1} } \mu_n(\mathbb{C}) \leftrightarrow \mathbb{Q/Z} nZ1μn(C)Q/Z.

Q / Z \mathbb{Q/Z} Q/Z是无限群,但它每个元素都是扭元(有限阶元).

回忆分圆多项式 Φ n ( x ) = ∏ ζ n ∈ μ n ( C ) ( x − ζ n ) \Phi_n(x)=\prod_{\zeta_n \in \mu_n(\mathbb{C})} (x-\zeta_n) Φn(x)=ζnμn(C)(xζn). 下面的习题给出快速计算 Φ n ( x ) \Phi_n(x) Φn(x)的公式.
(11). 求证 x n − 1 = ∏ d ∣ n Φ d ( x ) x^n-1 = \prod_{d \vert n} \Phi_d (x) xn1=dnΦd(x)
(12). 回忆Moebius变换. 我们现在需要一个乘法版本:
f ( n ) = ∏ d ∣ n g ( d ) ⇔ g ( n ) = ∏ d ∣ n f ( d ) μ ( n d ) . f(n)=\prod_{d \vert n} g(d) \Leftrightarrow g(n)=\prod_{d \vert n}f(d)^{\mu(\frac{n}{d})}. f(n)=dng(d)g(n)=dnf(d)μ(dn).

由此导出计算 Φ n \Phi_n Φn的公式, 并计算 Φ j , j = 1 , … , 18 \Phi_{j}, j=1, \ldots, 18 Φj,j=1,,18.

:由于分圆多项式是本原单位根在 Q \mathbb{Q} Q上的极小多项式,它们在 Q \mathbb{Q} Q上显然不可约. 如果能证明它们是整系数多项式,那么根据高斯引理,它们在 Z \mathbb{Z} Z上也不可约. 请读者想想,怎样证明分圆多项式是整系数的?

我们说明 Q ( 5 ) ⊂ Q ( ζ 5 ) \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta_5) Q(5 )Q(ζ5), 从而给出Kronecker-Weber定理(如果Galois扩张 K / Q K/\mathbb{Q} K/Q上使得 G a l ( K / Q ) Gal(K/\mathbb{Q}) Gal(K/Q)是交换群,那么 K K K是某个分圆域的子域)的一个例子. 为此只需要计算出 ζ 5 \zeta_5 ζ5的值. 已知 Φ 5 ( x ) = ∏ ζ 5 ∈ μ 5 × ( C ) ( x − ζ 5 ) = x 4 + x 3 + x 2 + x + 1 \Phi_5(x)=\prod_{\zeta_5 \in \mu_5^\times (\mathbb{C})} (x-\zeta_5) = x^4+x^3+x^2+x+1 Φ5(x)=ζ5μ5×(C)(xζ5)=x4+x3+x2+x+1 .

如果用类似Lagrange resolvent的方法,可以这样进行:记 F = Q ( ζ 5 + ζ 5 − 1 ) F=\mathbb{Q}(\zeta_5+\zeta_5^{-1}) F=Q(ζ5+ζ51) Q ( ζ 5 ) \mathbb{Q}(\zeta_5) Q(ζ5)的极大实子域. 令 η = ζ 5 + ζ 5 − 1 \eta= \zeta_5+\zeta_5^{-1} η=ζ5+ζ51.

(13) 回忆Galois群 G a l ( Q ( ζ 5 ) / Q ) ≅ ( Z / 5 Z ) × Gal(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \cong (\mathbb{Z/5Z})^\times Gal(Q(ζ5)/Q)(Z/5Z)×. 由此确定 G a l ( F / Q ) Gal(F/\mathbb{Q}) Gal(F/Q).

不需计算就知 G a l ( F / Q ) Gal(F/\mathbb{Q}) Gal(F/Q)是二阶群,设它的生成元为 τ \tau τ.

(14) 计算 η τ = τ ( η ) \eta^\tau=\tau(\eta) ητ=τ(η). 由此求出 η \eta η Q \mathbb{Q} Q上的极小多项式. 解出 η = ζ 5 + 1 ζ 5 \eta=\zeta_5+\frac{1}{\zeta_5} η=ζ5+ζ51, 由此求出 ζ 5 \zeta_5 ζ5.

: 可以用下面的方法求出 Φ 5 ( x ) \Phi_5(x) Φ5(x) R \mathbb{R} R上的因式分解(由于 Φ 5 \Phi_5 Φ5 Q \mathbb{Q} Q上不可约,所以没有实根,于是它在实数域上因式分解成两个二次多项式的乘积):注意到
Φ 5 ( x ) = 0 ⇔ x 2 + x + 1 + 1 x + 1 x 2 = 0. \Phi_5(x)=0 \Leftrightarrow x^2+x+1+\frac{1}{x}+\frac{1}{x^2}=0. Φ5(x)=0x2+x+1+x1+x21=0.
t = x + 1 x t=x+\frac{1}{x} t=x+x1, 上面的式子可以写成 t 2 + t = 1 t^2+t=1 t2+t=1. 在 C \mathbb{C} C上因式分解,得到 ( t − − 1 + 5 2 ) ( t + 1 + 5 2 ) = 0 (t-\frac{-1+\sqrt{5}}{2})(t+\frac{1+\sqrt{5}}{2})=0 (t21+5 )(t+21+5 )=0. 通常写 ϕ = 1 + 5 2 \phi=\frac{1+\sqrt{5}}{2} ϕ=21+5 (黄金分割), 故
( x + 1 x + ϕ ) ( x + 1 x + 1 ϕ ) = 0 ⇔ ( x 2 + ϕ x + 1 ) ( x 2 + x ϕ + 1 ) = 0. (x+\frac{1}{x}+\phi)(x+\frac{1}{x}+\frac{1}{\phi})=0 \Leftrightarrow (x^2+\phi x + 1)(x^2 +\frac{x}{\phi}+1)=0. (x+x1+ϕ)(x+x1+ϕ1)=0(x2+ϕx+1)(x2+ϕx+1)=0.

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值